[1] |
周济. 智能制造——“中国制造2025”的主攻方向[J]. 中国机械工程, 2015, 26(17):2273-2284.
|
|
ZHOU Ji. Intelligent Manufacturing-Main Direction of "Made in China 2025"[J]. China Mechanical Engineering, 2015, 26(17):2273-2284.
|
[2] |
ZHOU J, LI P G, ZHOU Y H, et al. Toward New-Generation Intelligent Manufacturing[J]. Engineering, 2018, 4(4):11-20.
|
[3] |
LIN Y J, WEI S H, HUANG C Y. Intelligent Manufacturing Control Systems:The Core of Smart Factory[J]. Procedia Manufacturing, 2019, 39:389-397.
doi: 10.1016/j.promfg.2020.01.382
|
[4] |
雷亚国, 贾峰, 孔德同. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5):94-104.
doi: 10.3901/JME.2018.05.094
|
|
LEI Yaguo, JIA Feng, KONG Detong, et al. Opportunities and Challenges of Machinery Intelligent Fault Diagnosis in Big Data Era[J]. Journal of Mechanical Engineering, 2018, 54(5):94-104.
doi: 10.3901/JME.2018.05.094
|
[5] |
SU Z Q, TANG B P, LIU Z R, et al. Multi-Fault Diagnosis for Rotating Machinery Based on Orthogonal Supervised Linear Local Tangent Space Alignment and Least Square Support Vector Machine[J]. Neurocomputing, 2015, 157:208-222.
doi: 10.1016/j.neucom.2015.01.016
|
[6] |
CERRADA M, ZURITA G, CABRERA D, et al. Fault Diagnosis in Spur Gears Based on Genetic Algorithm and Random Forest[J]. Mechanical Systems & Signal Processing, 2016,70-71:87-103.
|
[7] |
ZHAO X L, JIA M P, LIN M Y. Deep Laplacian Auto-Encoder and its Application into Imbalanced Fault Diagnosis of Rotating Machinery[J]. Measurement, 2019, 152:1-21.
|
[8] |
ZHANG D C, STEWART E, ENTEZAMI M, et al. Intelligent Acoustic-Based Fault Diagnosis of Roller Bearings Using a Deep Graph Convolutional Network[J]. Measurement, 2020, 156:1-9.
|
[9] |
CAO X C, CHEN B Q, YAO B, et al. An Intelligent Milling Tool Wear Monitoring Methodology Based on Convolutional Neural Network with Derived Wavelet Frames Coefficient[J]. Applied Sciences-Basel, 2019, 9(18):1-26.
|
[10] |
贺王鹏, 胡洁, 陈彬强, 等. 一种叶片裂纹检测的稀疏共振解调算法[J]. 西安电子科技大学学报, 2019, 46(6):75-80.
|
|
HE Wangpeng, HU Jie, CHEN Bingqiang, et al. Sparsity-Induced Resonance Demodulation Method for Blade Crcak Detection[J]. Journal of Xidian University, 2019, 46(6):75-80.
|
[11] |
KHAN S, YAIRI T. A Review on the Application of Deep Learning in System Health Management[J]. Mechanical Systems & Signal Processing, 2018, 107:241-265.
|
[12] |
CAO X C, CHEN B Q, YAO B, et al. Combining Translation-Invariant Wavelet Frames and Convolutional Neural Network for Intelligent Tool Wear State Identification[J]. Computers in Industry, 2019, 106:71-84.
doi: 10.1016/j.compind.2018.12.018
|
[13] |
ZHANG L, ZUO W M, ZHANG D. LSDT:Latent Sparse Domain Transfer Learning for Visual Adaptation[J]. IEEE Transactions on Image Processing, 2016, 25(3):1177-1191.
doi: 10.1109/TIP.2016.2516952
|
[14] |
DENG J, XU X Z, ZHANG Z X, et al. Universum Autoencoder-Based Domain Adaptation for Speech Emotion Recognition[J]. IEEE Signal Processing Letters, 2017, 24(4):500-504.
doi: 10.1109/LSP.2017.2672753
|
[15] |
LI W, DUAN L X, XU D, et al. Learning with Augmented Features for Supervised and Semi-supervised Heterogeneous Domain Adaptation[J]. IEEE Trans Pattern Anal Mach Intell, 2014, 36(6):1134-1148.
doi: 10.1109/TPAMI.2013.167
|
[16] |
CHEN Z Y, GRYLIAS K, LI W H. Intelligent Fault Diagnosis for Rotary Machinery Using Transferable Convolutional Neural Network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(1):339-349.
doi: 10.1109/TII.2019.2917233
|
[17] |
SHAO S Y, MCALEER S, YAN R Q, et al. Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4):2446-2455.
doi: 10.1109/TII.2018.2864759
|
[18] |
贺王鹏, 孙伟, 苏博, 等. 机械故障诊断的稀疏特征提取方法[J]. 西安电子科技大学学报, 2018, 45(2):154-159.
|
|
HE Wangpeng, SUN Wei, SU Bo, et al. Sparse Feature Extraction Technique and Its Application to Machinery Fault Diagnosis[J]. Journal of Xidian University, 2018, 45(2):154-159.
|
[19] |
蔡伟立, 胡小锋, 刘梦湘. 基于迁移学习的刀具剩余寿命预测方法[J]. 计算机集成制造系统, 2019, 27(6):1541-1549.
|
|
CAI Weili, HU Xiaofeng, LIU Mengxiang. Research on Prediction Method of Tool Remaining Useful Life Based on Transfer Learning[J]. Computer Integrated Manufacturing Systems, 2019, 27(6):1541-1549.
|
[20] |
李聪波, 王睿, 张友. 基于迁移学习的离心鼓风机故障预警方法[J]. 中国机械工程, 2021, 32(17):2090-2099.
|
|
LI Congbo, WANG Rui, ZHANG You. A Novel Fault Warning Method for Centrifugal Blowes Based on Transfer Learning[J]. China Mechanical Engineering, 2021, 32(17):2090-2099.
|
[21] |
DING C T, ZHOU A, LIU Y X, et al. A Cloud-Edge Collaboration Framework for Cognitive Service[J]. IEEE Transactions on Cloud Computing, 2020, 10(3):1489-1499.
doi: 10.1109/TCC.2020.2997008
|
[22] |
马悦, 张玉梅. 面向多接入边缘计算的VNFM分布式部署方案[J]. 西安电子科技大学学报, 2021, 48(4):20-26.
|
|
MA Yue, ZHANG Yumei. Method for Distributed Deployment of the Virtual Network Function Manager for MEC[J]. Journal of Xidian University, 2021, 48(4):20-26.
|
[23] |
ZHANG H, CHEN S C, ZOU P, et al. Research and Application of Industrial Equipment Management Service System Based on Cloud-Edge Collaboration[C]// 2019 Chinese Automation Congress. Hangzhou: Institute of Electrical and Electronics Engineers Inc, 2019:5451-5456.
|
[24] |
MATTHIAS H, RICHARD K, JEAN M, et al. A Real-Time Algorithm for Signal Analysis with the Help of the Wavelet Transform[C]// Time-Frequency Methods and Phase Space. Marseille:Springer-Verlag, 1987:286-297.
|
[25] |
EVAN S, JONATHAN L, TREVOR D. Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683
|
[26] |
CHEN L C, GEORGE P, IASONAS K, et al. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs[C]// International Conference on Learning Representations. San Diego: International Conference on Learning Representations, 2015:357-361.
|
[27] |
YU F, KOLTUN V. Multi-Scale Context Aggregation by Dilated Convolutions[C]// 4th International Conference on Learning Representations. San Juan: International Conference on Learning Representations, 2016:1-13.
|
[28] |
KARSTEN B, ARTHUR G, MALTE R, et al. Integrating Structured Biological Data by Kernel Maximum Mean Discrepancy[J]. Bioinformatics, 2006, 22(14):49-57.
pmid: 16873512
|
[29] |
ARTHUR G, KARSTEN B, MALTE R, et al. A Kernel Method for the Two-Sample-Problem[C]// Advances in Neural Information Processing Systems 19,Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems.Vancouver:MIT, 2006:513-520.
|
[30] |
CUKA B, KIM D. Fuzzy Logic Based Tool Condition Monitoring for End-milling[J]. Robotics and Computer-Integrated Manufacturing, 2017, 47:22-36.
doi: 10.1016/j.rcim.2016.12.009
|
[31] |
LI B J, CAO H J, Yan J H, et al. A Life Cycle Approach to Characterizing Carbon Efficiency of Cutting Tools[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(9-12):3347-3355.
doi: 10.1007/s00170-017-0728-9
|
[32] |
KONSTANTINOS S, ATHANASIOS K. Reliability Assessment of Cutting Tool Life Based on Surrogate Approximation Methods[J]. International Journal of Advanced Manufacturing Technology, 2014, 71(5):1197-1208.
doi: 10.1007/s00170-013-5560-2
|
[33] |
PENG C, LI L L, CHEN Q, et al. A Fault Diagnosis Method for Rolling Bearings Based on Parameter Transfer Learning under Imbalance Data Sets[J]. Energies, 2021, 14(4):1-18.
doi: 10.3390/en14010001
|
[34] |
XU W, WAN Y, ZUO T Y, et al. Transfer Learning Based Data Feature Transfer for Fault Diagnosis[J]. Ieee Access, 2020, 8:76120-76129.
doi: 10.1109/ACCESS.2020.2989510
|
[35] |
WANG J J, ZHAO R, GAO R. Probabilistic Transfer Factor Analysis for Machinery Autonomous Diagnosis Cross Various Operating Conditions[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(8):5335-5344.
doi: 10.1109/TIM.2019.2963731
|
[36] |
CAO X C, CHEN B Q, ZENG N Y. A Deep Domain Adaption Model with Multi-Task Networks for Planetary Gearbox Fault Diagnosis[J]. Neurocomputing, 2020, 409:173-190.
doi: 10.1016/j.neucom.2020.05.064
|