西安电子科技大学学报 ›› 2023, Vol. 50 ›› Issue (3): 122-131.doi: 10.19665/j.issn1001-2400.2023.03.012

• 计算机科学与技术 & 网络空间安全 • 上一篇    下一篇

融合超分辨率重建技术的多尺度目标检测算法

王娟(),刘子杉(),武明虎(),陈关海(),郭力权()   

  1. 湖北工业大学 太阳能高效利用与储能运行控制湖北省实验室,湖北 武汉 430068
  • 收稿日期:2022-06-29 出版日期:2023-06-20 发布日期:2023-10-13
  • 通讯作者: 武明虎
  • 作者简介:王 娟(1983—),女,副教授,博士,E-mail:happywj@hbut.edu.cn;|刘子杉(1997—),女,湖北工业大学硕士研究生,E-mail:369432554@qq.com;|陈关海(1997—),男,湖北工业大学硕士研究生,E-mail:245604832@qq.com;|郭力权(1997—),男,湖北工业大学硕士研究生,E-mail:2544508227@qq.com
  • 基金资助:
    国家自然科学基金(62006073);湖北省中央引导地方科技发展专项(2019ZYYD020);湖北省重点研发计划(2021BGD013);湖北工业大学自主探索计划(XJ2021002601)

Multi-scale object detection algorithm combined with super-resolution reconstruction technology

WANG Juan(),LIU Zishan(),WU Minghu(),CHEN Guanhai(),GUO Liquan()   

  1. Hubei Laboratory of Solar Energy Efficient Utilization and Energy Storage Operation Control, Hubei University of Technology,Wuhan 430068,China
  • Received:2022-06-29 Online:2023-06-20 Published:2023-10-13
  • Contact: Minghu WU

摘要:

目前大多数目标检测算法,由于尺度跨度较大而导致模型整体精确率和召回率不高,容易出现错检、漏检等现象。针对上述问题,提出一种融合超分辨率重建技术的多尺度目标检测算法。首先,算法以单阶段目标检测算法YOLO框架为基础,在颈部网络实现多尺度特征融合时加入超分辨率重建模块,避免进一步丢失较深层特征图中的细节特征。其次,使用通道注意力模块将较浅层特征图中的无关特征进行抑制,重点关注含有目标轮廓特征的通道信息,进一步增强浅层特征的表达能力。最后,在PASCAL VOC 2007和MS COCO 2017公开数据集上进行了消融实验和对比实验。实验结果表明,所提模块对检测性能有不同程度的提升,相比当前其他多尺度目标检测算法,所提算法在大、中、小三种尺度下目标平均精确率分别提升约1.20%、1.20%和1.30%,平均召回率分别提升约4.20%、3.50%和4.20%,算法整体检测性能得到进一步改善。

关键词: 多尺度目标检测, 超分辨率技术, 注意力机制, 深度学习

Abstract:

At present,most object detection algorithms have poor performance because of the large span of scales,leading to errors and omissions.To address the above issues,a multi-scale object detection algorithm combined with the super-resolution technology is proposed in this paper.First,based on the one-stage YOLO framework,the super-resolution module is employed to the neck network during the process of multi-scale feature fusion,which avoids further loss of detailed features in deeper layers.Second,the attention module is integrated in the shallower layers to focus on the channel information on object contour features and to suppress irrelevant features,thus improving the superficial representational capacity.Finally,ablation and comparative experiments are carried out on PASCAL VOC 2007 and MS COCO 2017 public datasets.Experimental results show that the proposed module can improve the detection performance.Compared with the current contrast algorithms,not only can the average accuracy rate of small,medium and large objects be increased by 1.20%,1.20% and 1.30%,but also the average recall rate can be improved by 4.20%,3.50% and 4.20%,respectively.

Key words: multi-scale object detection, super-resolution technology, attention mechanism, deep learning

中图分类号: 

  • TP183