西安电子科技大学学报 ›› 2023, Vol. 50 ›› Issue (3): 151-170.doi: 10.19665/j.issn1001-2400.2023.03.015

• 信息与通信工程 & 电子科学与技术 • 上一篇    下一篇

采用深度学习的极化SAR地物分类方法综述

谢雯1(),滑文强1(),焦李成2(),王若男1()   

  1. 1.西安邮电大学 通信与信息工程学院,陕西 西安 710121
    2.西安电子科技大学 人工智能学院,陕西 西安 710071
  • 收稿日期:2022-05-27 出版日期:2023-06-20 发布日期:2023-10-13
  • 作者简介:谢 雯(1989—),女,讲师,博士,E-mail:xiewen@xupt.edu.cn;|滑文强(1987—),男,讲师,博士,E-mail:huawenqiang@xupt.edu.cn;|焦李成(1959—),男,教授,博士,E-mail:lchjiao@mail.xidian.edu.cn;|王若男(1998—),女,西安邮电大学硕士研究生,E-mail:wangruonan@stu.xupt.edu.cn
  • 基金资助:
    国家自然科学基金(61901365);国家自然科学基金(62071379);陕西省自然科学基础研究计划(2019JQ-377);陕西省重点研发计划工业领域(2021GY-103)

Review on polarimetric SAR terrain classification methods using deep learning

XIE Wen1(),HUA Wenqiang1(),JIAO Licheng2(),WANG Ruonan1()   

  1. 1. School of Communications and Information Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China
    2. School of Artificial Intelligence,Xidian University,Xi’an 710071,China
  • Received:2022-05-27 Online:2023-06-20 Published:2023-10-13

摘要:

极化合成孔径雷达 (PolSAR) 能够实现全天时、全天候的成像,因此该数据成为遥感数据的主要来源之一。其中地物分类是极化SAR数据解译的重要研究内容,已成为该研究领域的热点之一,目前在军事和民事领域都有着广泛的应用。近年来深度学习已在多个研究领域取得了显著成果,并且在极化SAR图像解译领域也获得了一定的成效。与传统的图像分类方法相比,深度学习方法具有自动提取特征、泛化性能强及获取较高准确率等优势。围绕极化SAR数据解译中的地物分类问题,对现有采用深度学习的极化SAR图像地物分类方法进行综述。根据深度学习中不同的网络模型,主要从三方面对极化SAR地物分类研究进行了详细叙述,即基于深度信念网络,稀疏自编码网络以及卷积神经网络的图像分类模型。最后,通过与经典的极化SAR分类方法进行性能评估和比较,总结采用深度学习的极化SAR地物分类方法的优势与不足,同时对该领域未来的发展趋势进行分析和探讨。

关键词: 极化合成孔径雷达, 图像分类, 深度学习, 研究综述

Abstract:

Polarimetric synthetic aperture radar (PolSAR) is one of the main sources of remote sensing data,because it can realize all-day and all-weather imaging.Terrain classification is an important research in the field of PolSAR data interpretation,which has become one of the hotspots in the research field and has been widely used in both military and civilian applications.In recent years,deep learning has achieved remarkable results in many research fields,some of which have been made in the field of PolSAR image processing.Compared with traditional image classification methods,the deep learning method has the advantages of automatic extracting deep features,strong generalization and high accuracy.In this paper,the existing terrain classification methods for the PolSAR image based on deep learning are reviewed.According to the different network models in deep learning,the research on PolSAR terrain classification is described in detail from three aspects,that is,deep belief network,sparse autoencoder network and convolutional neural network.Finally,the advantages and disadvantages of PolSAR terrain classification based deep learning are summarized in comparison with classical classification methods.Meanwhile,the development trend of PolSAR terrain classification is analyzed and discussed.

Key words: polarimetric synthetic aperture radar, image classification, deep learning, research review

中图分类号: 

  • N7