西安电子科技大学学报 ›› 2023, Vol. 50 ›› Issue (3): 151-170.doi: 10.19665/j.issn1001-2400.2023.03.015
收稿日期:
2022-05-27
出版日期:
2023-06-20
发布日期:
2023-10-13
作者简介:
谢 雯(1989—),女,讲师,博士,E-mail:基金资助:
XIE Wen1(),HUA Wenqiang1(),JIAO Licheng2(),WANG Ruonan1()
Received:
2022-05-27
Online:
2023-06-20
Published:
2023-10-13
摘要:
极化合成孔径雷达 (PolSAR) 能够实现全天时、全天候的成像,因此该数据成为遥感数据的主要来源之一。其中地物分类是极化SAR数据解译的重要研究内容,已成为该研究领域的热点之一,目前在军事和民事领域都有着广泛的应用。近年来深度学习已在多个研究领域取得了显著成果,并且在极化SAR图像解译领域也获得了一定的成效。与传统的图像分类方法相比,深度学习方法具有自动提取特征、泛化性能强及获取较高准确率等优势。围绕极化SAR数据解译中的地物分类问题,对现有采用深度学习的极化SAR图像地物分类方法进行综述。根据深度学习中不同的网络模型,主要从三方面对极化SAR地物分类研究进行了详细叙述,即基于深度信念网络,稀疏自编码网络以及卷积神经网络的图像分类模型。最后,通过与经典的极化SAR分类方法进行性能评估和比较,总结采用深度学习的极化SAR地物分类方法的优势与不足,同时对该领域未来的发展趋势进行分析和探讨。
中图分类号:
谢雯,滑文强,焦李成,王若男. 采用深度学习的极化SAR地物分类方法综述[J]. 西安电子科技大学学报, 2023, 50(3): 151-170.
XIE Wen,HUA Wenqiang,JIAO Licheng,WANG Ruonan. Review on polarimetric SAR terrain classification methods using deep learning[J]. Journal of Xidian University, 2023, 50(3): 151-170.
表1
不同极化SAR图像分类方法的分类精度%"
种类 | 方法 | |||||
---|---|---|---|---|---|---|
Wishart | SVM | DBN[ | WRBM[ | WBRBM[ | GRBM[ | |
Stem beans | 93.36 | 84.06 | 76.76 | 94.78 | 96.60 | 95.65 |
Rapeseed | 61.41 | 62.56 | 51.89 | 80.42 | 86.71 | 83.26 |
Bare soil | 87.14 | 92.86 | 94.95 | 93.64 | 96.99 | 97.96 |
Potatoes | 77.66 | 82.53 | 87.61 | 98.11 | 88.88 | 92.69 |
Beet | 83.70 | 93.95 | 87.54 | 96.30 | 95.81 | 97.45 |
Wheat 2 | 73.61 | 71.67 | 81.03 | 94.66 | 88.17 | 82.19 |
Peas | 86.52 | 91.38 | 91.44 | 92.07 | 96.80 | 95.97 |
Wheat 3 | 90.77 | 95.67 | 97.66 | 97.82 | 93.77 | 98.02 |
Lucerne | 94.61 | 79.21 | 95.70 | 92.45 | 96.11 | 96.91 |
Barley | 96.95 | 95.31 | 59.28 | 98.88 | 98.06 | 91.80 |
Wheat | 95.17 | 90.23 | 94.34 | 93.86 | 92.32 | 98.14 |
Grasses | 62.58 | 72.95 | 10.03 | 81.52 | 90.93 | 67.64 |
Forest | 93.80 | 90.57 | 92.52 | 95.34 | 91.41 | 95.64 |
Water | 40.33 | 90.99 | 68.95 | 99.74 | 99.60 | 89.59 |
Building | 87.35 | 1.63 | 23.95 | 82.45 | 85.26 | 77.69 |
OA | 81.66 | 79.70 | 74.24 | 92.80 | 93.08 | 90.71 |
Kappa | 0.800 7 | 0.778 6 | 0.719 1 | 0.921 5 | 0.924 9 | 0.898 7 |
表2
不同极化SAR图像分类方法的分类精度%"
种类 | 方法 | ||||||||
---|---|---|---|---|---|---|---|---|---|
DBN[ | WRBM[ | SAE[ | SAE- BWMRF[ | SSAE- SL[ | WAE[ | CV-WSAE[ | CAE[ | MAE[ | |
Stem beans | 79.05 | 95.17 | 84.22 | 98.91 | 98.80 | 92.42 | 78.89 | 78.98 | 95.91 |
Rapeseed | 39.33 | 64.31 | 74.19 | 66.49 | 87.82 | 78.80 | 72.90 | 83.32 | 84.11 |
Bare soil | 0.00 | 39.95 | 93.78 | 99.88 | 97.73 | 96.06 | 76.70 | 79.24 | 92.62 |
Potatoes | 93.74 | 87.00 | 81.55 | 97.33 | 93.74 | 93.70 | 96.30 | 98.48 | 89.64 |
Beet | 93.25 | 89.33 | 88.96 | 98.79 | 96.52 | 89.06 | 94.37 | 96.72 | 95.77 |
Wheat 2 | 89.52 | 62.63 | 64.88 | 93.51 | 87.21 | 90.62 | 87.60 | 85.93 | 81.02 |
Peas | 93.77 | 93.33 | 92.85 | 97.91 | 95.72 | 78.20 | 41.94 | 49.22 | 96.42 |
Wheat 3 | 97.70 | 95.45 | 94.32 | 94.15 | 96.70 | 85.69 | 79.52 | 85.02 | 95.06 |
Lucerne | 80.60 | 93.84 | 94.72 | 96.88 | 96.91 | 93.52 | 92.13 | 93.83 | 95.34 |
Barley | 75.98 | 93.51 | 94.38 | 88.86 | 94.79 | 93.04 | 97.11 | 97.76 | 95.98 |
Wheat | 92.01 | 90.18 | 85.14 | 92.08 | 93.55 | 91.23 | 94.76 | 96.12 | 91.57 |
Grasses | 42.66 | 56.55 | 77.20 | 80.94 | 93.36 | 92.39 | 96.60 | 98.64 | 86.41 |
Forest | 94.08 | 89.52 | 93.57 | 90.49 | 93.95 | 93.48 | 87.56 | 88.49 | 91.13 |
Water | 91.77 | 83.64 | 99.30 | 35.70 | 99.61 | 86.89 | 90.37 | 92.20 | 98.02 |
Building | 0.00 | 8.57 | 37.69 | 81.77 | 87.48 | 85.39 | 59.74 | 72.99 | 84.09 |
OA | 70.86 | 76.19 | 83.78 | 87.58 | 94.26 | 89.97 | 83.10 | 86.46 | 92.01 |
Kappa | 0.681 7 | 0.740 4 | 0.823 1 | 0.865 1 | 0.937 8 | 0.885 7 | 0.818 2 | 0.854 0 | 0.912 7 |
表3
不同极化SAR图像分类方法的分类精度%"
种类 | 方法 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
DBN[ | SAE[ | CNN[ | 3D- CNN[ | FCN- SPUO[ | MI-SSL[ | KGraph- CNN[ | CNNSP[ | CV-3D- CNN[ | PCN[ | |
Stem beans | 79.05 | 84.22 | 83.81 | 97.52 | 99.98 | 99.95 | 99.07 | 98.58 | 98.63 | 92.11 |
Rapeseed | 39.33 | 74.19 | 67.52 | 90.03 | 98.87 | 99.64 | 99.15 | 94.44 | 97.48 | 95.76 |
Bare soil | 0.00 | 93.78 | 60.72 | 97.67 | 99.91 | 99.43 | 100.00 | 99.67 | 92.74 | 98.71 |
Potatoes | 93.74 | 81.55 | 90.75 | 90.78 | 99.44 | 99.97 | 99.63 | 99.73 | 93.60 | 96.49 |
Beet | 93.25 | 88.96 | 95.25 | 91.47 | 98.93 | 99.95 | 99.76 | 97.11 | 95.21 | 91.07 |
Wheat 2 | 89.52 | 64.88 | 86.34 | 86.08 | 98.07 | 99.75 | 85.86 | 99.32 | 95.73 | 96.27 |
Peas | 93.77 | 92.85 | 98.46 | 96.45 | 99.03 | 99.86 | 99.96 | 99.55 | 87.65 | 97.52 |
Wheat 3 | 97.70 | 94.32 | 97.01 | 97.46 | 99.78 | 99.95 | 99.01 | 98.21 | 99.44 | 96.87 |
Lucerne | 80.60 | 94.72 | 80.54 | 95.31 | 97.45 | 99.98 | 98.10 | 92.33 | 84.81 | 96.13 |
Barley | 75.98 | 94.38 | 85.62 | 97.46 | 99.17 | 99.60 | 98.08 | 97.29 | 84.14 | 92.23 |
Wheat | 92.01 | 85.14 | 91.36 | 92.92 | 99.56 | 99.82 | 99.71 | 96.87 | 98.79 | 96.62 |
Grasses | 42.66 | 77.20 | 64.86 | 91.54 | 99.68 | 99.51 | 92.50 | 93.41 | 72.39 | 96.32 |
Forest | 94.08 | 93.57 | 87.49 | 96.03 | 99.89 | 99.98 | 98.81 | 99.19 | 99.85 | 99.05 |
Water | 91.77 | 99.30 | 91.82 | 93.66 | 99.50 | 100.00 | 98.69 | 99.07 | 99.95 | 98.06 |
Building | 0.00 | 37.69 | 85.44 | 73.61 | 90.51 | 96.95 | 76.84 | 95.78 | 96.22 | 81.26 |
OA | 70.86 | 83.78 | 84.47 | 92.53 | 99.24 | 99.84 | 96.34 | 97.37 | 93.42 | 96.36 |
Kappa | 0.681 7 | 0.823 1 | 0.830 7 | 0.918 6 | 0.991 8 | 0.995 9 | 0.960 2 | 0.971 4 | 0.928 5 | 0.960 4 |
表4
各类基于深度学习的极化SAR图像分类方法比较表"
极化SAR图像分类方法 | 代表性算法 | 优点 | 不足 |
---|---|---|---|
基于DBN的极化SAR 图像分类方法 | WRBM[ WBRBM[ | 图像细节信息清晰,边缘保持得好;既包含了信念网络的优点,也保留了极化SAR的数据特性 | 没有考虑图像的空间信息;斑点噪声较明显;增加了网络的复杂度,训练时间成本增加 |
基于SAE的极化SAR 图像分类方法 | SSAE-SL[ SAE-BWMRF[ | 考虑极化SAR图像像素之间的空间信息 | 没有考虑极化SAR数据的统计分布信息和物理散射机制 |
WAE[ MAE[ | 图像细节信息清晰,边缘保持得好;既继承自编码网络的优点,也保留了极化SAR的数据特性 | 没有考虑图像的空间信息;斑点噪声较明显;增加了网络的复杂度,训练时间成本增加 | |
基于CNN的极化SAR 图像分类方法 | 3D-CNN[ CV-CNN[ CV-3D-CNN[ | 图像区域一致性好;考虑了空间信息、特征之间的关系以及极化SAR数据的复数特性 | 图像细节信息不清晰;增加了网络的复杂度,训练时间成本增加 |
CV-FCN[ PCLNet[ KGraph-CNN[ CNNSP[ | 图像区域一致性好;解决小样本问题 | 图像细节信息不清晰;增加了网络的复杂度,训练时间成本增加 |
[1] |
FABIAN S P, PAN J Y, ADAM T D. Estimation of Significant Wave Height of Near-Range Traveling Ocean Waves Using Sentinel-1 SAR Images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(4):1067-1075.
doi: 10.1109/JSTARS.4609443 |
[2] |
CORNRLIU O D, GOTTFRIED S, MIHAI D. SAR Image Land Cover Datasets for Classification Benchmarking of Temporal Changes[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(5):1571-1592.
doi: 10.1109/JSTARS.4609443 |
[3] |
LIU G W, ZHANG X, MENG J M. A Small Ship Target Detection Method Based on Polarimetric SAR[J]. Remote Sensing, 2019, 11(24):2938.
doi: 10.3390/rs11242938 |
[4] | 张强, 杨欣朋, 赵世祥, 等. 注意力机制的SAR图像车辆目标检测网络[J]. 西安电子科技大学学报, 2023, 50(1):36-47. |
ZHANG Qiang, YANG Xinpeng, ZHAO Shixiang, et al. Vehicle-Target Detection Network for SAR Images Based on the Attention Mechanism[J]. Journal of Xidian University, 2023, 50(1):36-47. | |
[5] |
王明春, 张嘉峰, 杨子渊, 等. Bata分布下基于白化滤波的极化SAR图像海绵舰船CFAR检测方法[J]. 电子学报, 2019, 47(9):1883-1890.
doi: 10.3969/j.issn.0372-2112.2019.09.010 |
WANG Mingchun, ZHANG Jiafeng, YANG Ziyuan, et al. A CFAR Detection Method of Ship Targets in Polarimetric SAR Imagery Based on Whitening Filter Under Beta Distributed Texture[J]. Acta Electronica Sinica, 2019, 47(9):1883-1890.
doi: 10.3969/j.issn.0372-2112.2019.09.010 |
|
[6] | 焦李成, 刘芳, 李玲玲, 等. 遥感影像深度学习智能解译与识别[M]. 西安: 西安电子科技大学出版社, 2019. |
[7] | 焦李成, 冯婕, 刘芳, 等. 高分辨遥感影像学习与感知[M]. 北京: 科学出版社, 2017. |
[8] |
LIM Y X, BURGIN M S, VANZYL J J. An Optimal Nonnegative Eigenvalue Decomposition for the Freeman and Durden Three-Component Scattering Model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4):2167-2176.
doi: 10.1109/TGRS.2016.2637882 |
[9] |
LEE J S, AINSWORTH T L, WANG Y, et al. Polarimetric SAR Speckle Filtering and the Extended Sigma Filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3):1150-1160.
doi: 10.1109/TGRS.2014.2335114 |
[10] | WANG H P, FENG X, JIN Y Q, et al. A Review of PolSAR Image Classification:From Polarimetry to Deep Learning[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway:IEEE, 2019:3189-3192. |
[11] | HUA W Q, WANG S, LIU H Y, et al. Semi-Supervised PolSAR Image Classification Based on Improved Co-Training[J]. IEEE Journal of Selected Topics in Applied Observations and Remote Sensing, 2017, 10(11):4971-4986. |
[12] | 曹芳, 洪文, 吴一戎. 基于Cloude-Pottier目标分解核聚合的层次聚类算法的全极化SAR数据的非监督分类算法研究[J]. 电子学报, 2008, 36(3):543-546. |
CAO Fang, HONG Wen, WUYirong. An Unsupervised Classification for Fully Polarimetric SAR Data Using Cloude Pottier Decomposition and Agglomerative Hierarchical Clustering Algorithm[J]. Acta Electronica Sinica, 2008, 36(3):543-546. | |
[13] |
YANG J, PENG Y N, YAMAGUCHI Y, et al. On Huynen’s Decomposition of Kennaugh Matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3):369-372.
doi: 10.1109/LGRS.2006.873229 |
[14] |
FREEMAN A, DURDEN S L. A Three-Component Scattering Model for Polarimetric SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3):963-973.
doi: 10.1109/36.673687 |
[15] |
YAMAGUCHI Y, MORIYAMA T, ISHIO M. Four-Component Scattering Model for Polarimetric SAR Image Decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8):1699-1706.
doi: 10.1109/TGRS.2005.852084 |
[16] |
闫丽丽, 张继贤, 高井祥, 等. 一种适合方位建筑物的基于物理散射模型的极化SAR影像四分量分解方法[J]. 电子学报, 2015, 43(1):203-208.
doi: 10.3969/j.issn.0372-2112.2015.01.032 |
YAN Lili, ZHANGJixian, GAO Jinxiang, et al. Four-Component Model-Based Decomposition of Polarimetric SAR Data for Oriented Urban Buildings[J]. Acta Electronica Sinica, 2015, 43(1):203-208.
doi: 10.3969/j.issn.0372-2112.2015.01.032 |
|
[17] | POTTIER E, CLOUDE S R. Application of the H/A/a Polarimetric Decomposition Theorems for Land Classification[J]. The International Society for Optical Engineering, 1997:132-143. |
[18] |
MANICKAM S, BHATTACHARYA A, SINGH G, et al. Estimation of Snow Surface Dielectric Constant from Polarimetric SAR Data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(1):211-218.
doi: 10.1109/JSTARS.4609443 |
[19] |
WANG Y H, LIU HW, JIU B. PolSAR Coherency Matrix Decomposition Based on Constrained Sparse Representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12):6683-6694.
doi: 10.1109/TGRS.2017.2727067 |
[20] |
宋婉莹, 李明, 张鹏, 等. 基于加权合成核与三重Markov场的极化SAR图像分类方法[J]. 电子学报, 2016, 44(3):520-526.
doi: 10.3969/j.issn.0372-2112.2016.03.004 |
SONG Wanying, LI Ming, ZHANG Peng, et al. A Classification Method of PolSAR Image Based on Weighted Composite Kernel and Triplet Markov Field[J]. Acta Electronica Sinica, 2016, 44(3):520-526.
doi: 10.3969/j.issn.0372-2112.2016.03.004 |
|
[21] |
UHLMANN S, KIRANYAZ S. Integrating Color Features in Polarimetric SAR Image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 55(12):6683-6694.
doi: 10.1109/TGRS.2017.2727067 |
[22] |
HINTON G E, SALAKHUTDINOV R R. Reducing the Dimensionality of Data with Neural Networks[J]. Science, 2006, 313(5786):504-507.
doi: 10.1126/science.1127647 pmid: 16873662 |
[23] |
HINTON G E. Learning Multiple Layers of Representation[J]. Trends in Cognitive Sciences, 2007, 11(10):428-434.
pmid: 17921042 |
[24] | NG. A.Sparse Autoencoder. CS294A Lecture notes 72 (2011)[R/OL].[2011-12-31]. http://graphics.stanford.edu/courses/cs233-22-spring/ReferencedPapers/SAE.pdf. |
[25] |
LECUN Y, BENGIO Y, HINTON G. Deep Learning[J]. Nature, 2015, 521(7553):436-444.
doi: 10.1038/nature14539 |
[26] |
CHEN Y Q, LI YY, JIAO L C, et al. Adversarial Reconstruction-Classification Networks for PolSAR Image Classification[J]. Remote Sensing, 2019, 11:415.
doi: 10.3390/rs11040415 |
[27] |
LIU H Y, LUO R Y, SHANG F H, et al. Semi-Supervised Deep Metric Learning Networks for Classification of Polarimetric SAR Data[J]. Remote Sensing, 2020, 12:1-14.
doi: 10.3390/rs12010001 |
[28] | LIU M C, HU Y, WANG S, et al. Fully Convolutional Semi-Supervised GAN for PolSAR Classification[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway:IEEE, 2018:621-624. |
[29] | SUN Q G, LI X F, LI L L, et al. Semi-Supervised Complex-Valued GAN for Polarimetric SAR Image Classification[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway:IEEE, 2019:3245-3248. |
[30] | LIU F, JIAO LC, TANG X. Task-Oriented GAN for PolSAR Image Classification and Clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 9(30):2707-2719. |
[31] | 周晓光, 匡纲要, 万建伟. 极化SAR图像分类综述[J]. 信号处理, 2008, 24(5):806-812. |
ZHOU Xiaoguang, KUANGGangyao, WAN Jianwei. A Review of Polarimetric SAR Image Classification[J]. Journal of Signal Processing, 2008, 24(5):806-812. | |
[32] | 邹斌, 张腊梅, 孙德明, 等. PolSAR图像信息提取技术及应用的发展[J]. 遥感技术与应用, 2009, 3(26):263-273. |
ZOU Bin, ZHANGLamei, SUN Deming, et al. Development and Application of Information Extraction Using Polarimetric SAR Data[J]. Remote Sensing Technology and Application, 2009, 3(26):263-273. | |
[33] | WANG H P, FENG X, YA Q J. A Review of PolSAR Image Classification:From Polarimetric to Deep Learning[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway:IEEE, 2019:3189-3192. |
[34] | 聂祥丽, 黄夏渊, 张波, 等. 极化合成孔径雷达图像相干斑抑制和分类方法综述[J]. 自动化学报, 2019, 8(45):1419-1438. |
NIE Xiangli, HUANG Xiayuan, ZHANG Bo, et al. Review on PolSAR Image Speckle Reduction and Classiflcation Methods[J]. Acta Automatica Sinica, 2019, 8(45):1419-1438. | |
[35] | 魏丹, 李渊, 黄丹. 极化SAR图像地物分类方法综述[J]. 计算机系统与应用, 2020, 29(11):29-39. |
WEI Dan, LI Yuan, HUANG Dan. Overview onMethods of Land Classification Based on Polarimetric SAR Images[J]. Computer Systems & Applications, 2020, 29 (11):29-39. | |
[36] | 毕海霞, 魏志强. 深度学习在极化SAR图像分类上的应用综述(英文)[J]. 雷达科学与技术, 2021, 19(5):539-551. |
BI Haixia, WEI Zhiqiang. A Survey:The Application of Deep Learning in PolSAR Image Classification[J]. Radar Science and Technology, 2021, 19(5):539-551. | |
[37] | 邓磊, 付珊珊, 张儒侠. 深度置信网络在极化SAR图像分类中的应用[J]. 中国图象图形学报, 2016, 27(7):933-941. |
DENG Lei, FU Shanshan, ZHANG Ruxia. Application of Deep Belief Network in Polarimetric SAR Image Classification[J]. Journal of Image and Graphics, 2016, 27(7):933-941. | |
[38] | HOU B, GUO X P, HOU W D, et al. PolSAR Image Classification Based on DBN and Tensor Dimensionality Reduction[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway:IEEE, 2018:8448-8451. |
[39] | GE S J, LU J C, GU H, et al. Polarimetric SAR Image Classification Based on Deep Belief Network and Superpixel Segmentation[C]//Proceeding of IEEE International Conference on Frontiers of Signal Processing (ICFSP). Piscataway:IEEE, 2017:114-119. |
[40] | GUO Y H, WANG S, GAO C Q, et al. Wishart RBM Based DBN for Polarimetric Synthetic Radar Data Classification[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway:IEEE, 2015:1841-1844. |
[41] |
LIU F, JIAO L C, HOU B, et al. Pol-SAR Image Classification Based on Wishart DBN and Local Spatial Information[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6):3292-3308.
doi: 10.1109/TGRS.2016.2514504 |
[42] |
JIAO L C, LIU F. Wishart Deep Stacking Network Fast PolSAR Image Classification[J]. IEEE Transactions on Image Processing, 2016, 25(7):3273-3286.
doi: 10.1109/TIP.2016.2567069 |
[43] |
HINYON G E, SALAKHUTDINOV R R. Reducing the Dimensionality of Data with Neural Networks[J]. Science, 2006, 313(28):504-507.
doi: 10.1126/science.1127647 |
[44] | XIE H M, WANG S, LIU K, et al. Multilayer Feature Learning for Polarimetric Synthetic Radar Data Classification[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway:IEEE, 2014:2818-2821. |
[45] | 张姝茵, 候彪, 焦李成, 等. 基于稀疏自编码器和边缘保持的Wishart马尔科夫随机场的极化SAR图像分类[J]. 红外线与毫米波学报, 2018, 37(2):177-183. |
ZHANG Shuyin, HOU Biao, JIAO Licheng, et al. PolSAR Image Classification Based on Sparse Autoencoder and Boundary-Preserved WMRF[J]. Journal of Infrared and Millimeter Waves, 2018, 37(2):177-183. | |
[46] | HOU B, KOU H D, JIAO L C, et al. Classification of Polarimetric SAR Images Using Multilayer Autoencoders and Superpixels[J]. IEEE Journal of Selected Topics in Applied Observations and Remote Sensing, 2016, 9(7):3072-3081. |
[47] | MORI G, REN X, EFROS A A, et al. Recovering Human Body Configurations:Combining Segmentation and Recognition[C]//Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE, 2004:326-333. |
[48] |
ZHANG L, MA W P, ZHANG D. Stacked Sparse Autoencoder in PolSAR Data Classification Using Local Spatial Information[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(9):1359-1363.
doi: 10.1109/LGRS.2016.2586109 |
[49] |
ZHANG L, JIAO L C, MA W P, et al. PolSAR Image Classification Based on Multi-Scale Stacked Sparse Autoencoder Sparse[J]. Neurocomputing, 2019, 351:167-179.
doi: 10.1016/j.neucom.2019.03.024 |
[50] |
HU YY, FAN J C, WANG J. Classification of PolSAR Images Based on Adaptive Nonlocal Stacked Sparse Autoencoder[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(7):1050-1054.
doi: 10.1109/LGRS.2018.2829182 |
[51] | BUADES A, COLL B, MOREL J M. A Non-Local Algorithm for Image Denoising[C]//Proceeding of IEEE Computer Society Conference on Computer Vision and pattern recognition (CVPR). Piscataway:IEEE, 2005:60-65. |
[52] |
DE S, RATHA D, RATHA D, et al. Tensorization of Multifrequency PolSAR Data for Classification Using an Autoencoder Network[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4):542-546.
doi: 10.1109/LGRS.2018.2799875 |
[53] |
GENG J, MA X R, FAN J C, et al. Semisupervised Classification of Polarimetric SAR Image via Superpixel Restrained Deep Neural Network[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(1):122-126.
doi: 10.1109/LGRS.2017.2777450 |
[54] | XIE W, JIAO L C, HOU B, et al. PolSAR Image Classification via Wishart-WAE Model or Wishart-CAE Model[J]. IEEE Journal of Selected Topics in Applied Observations and Remote Sensing, 2017, 10(8):3604-3615. |
[55] | XIE W, MA G N, HUA W Q, et al. Complex-Valued Wishart Stacked Auto-Encoder Network for PolSAR Image Classification[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway:IEEE, 2019:3193-3196. |
[56] |
WANG J, HOU B, JIAO L C, et al. PolSAR Image Classification Based on Modified Stacked Autoencoder Network and Data Distribution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3):1678-1695.
doi: 10.1109/TGRS.36 |
[57] |
CHEN Y Q, JIAO L C, LI Y Y, et al. Multilayer Projective Dictionary Pair Learning and Sparse Autoencoder for PolSAR Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12):6683-6694.
doi: 10.1109/TGRS.2017.2727067 |
[58] | 石俊飞, 刘芳, 林耀海, 等. 基于深度学习和层次语义模型的极化SAR分类[J]. 自动化学报, 2017, 2(43):215-226. |
SHI Junfei, LIU Fang, LIN Yaohai, et al. Polarimetric SAR Image Classiflcation Based on Deep Learning and Hierarchical Semantic Model[J]. Acta Automatica Sinica, 2017, 2(43):215-226. | |
[59] |
WU J, LIU F, ZHANG X R, et al. Local Maximal Homogeneous Region Search for SAR Speckle Reduction with Sketch-Based Geometrical Kernel Function[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5751-5764.
doi: 10.1109/TGRS.2013.2292081 |
[60] |
LIU F, SHI J F, JIAO L C, et al. Hierarchical Semantic Model and Scattering Mechanism Based PolSAR Image Classification[J]. Pattern Recognition, 2016, 59:325-342.
doi: 10.1016/j.patcog.2016.02.020 |
[61] |
CHEN X D, DENG J H. A Robust Polarimetric SAR Terrain Classification Based on Sparse Deep Autoencoder Model Combined with Wavelet Kernel-Based Classifier[J]. IEEE Access, 2020, 8:64810-64819.
doi: 10.1109/Access.6287639 |
[62] |
GENG J, FAN J, WANG H, et al. High-Resolution SAR Image Classification via Deep Convolutional Autoencoders[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11):2351-2355.
doi: 10.1109/LGRS.8859 |
[63] |
ZHOU Y, WANG H P, XU F et al. Polarimetric SAR Image Classification Using Deep Convolutional Neural Networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12):1935-1939.
doi: 10.1109/LGRS.2016.2618840 |
[64] |
CHEN S W, TAO C S. PolSAR Image Classification Using Polarimetric-Feature-Driven Deep Convolutional Neural Network[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4):627-631.
doi: 10.1109/LGRS.2018.2799877 |
[65] | 韩萍, 孙丹丹. 特征选择与深度学习相结合的极化SAR图像分类[J]. 信号处理, 2019, 6(35):972-978. |
HAN Ping, SUN Dandan. Classification ofPolarimetric SAR Image with Feature Selection and Deep Learning[J]. Journal of Signal Processing, 2019, 6(35):972-978. | |
[66] |
YANG C, HOU B, REN B, et al. CNN-Based Polarimetric Decomposition Feature Selection for PolSAR Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):8796-8812.
doi: 10.1109/TGRS.36 |
[67] | HUA W, WANG X, ZHANG C, et al. Attention-Based Multiscale Sequential Network for PolSAR Image Classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. |
[68] | RUI Y, XIN X, RONG G, et al. Composite Sequential Network with POA Attention for PolSAR Image Analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-15. |
[69] | FANG Z, ZHANG G, DAI Q, et al. PolSAR Image Classification Based on Complex-Valued Convolutional Long Short-Term Memory Network[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. |
[70] | CUI Y H, LIU F, JIAO L C, et al. Polarimetric Multipath Convolutional Neural Network for PolSAR Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-18. |
[71] | GAO F, HUANG T, WANG J, et al. Dual-Branch Deep Convolution Neural Network for Polarimetric SAR Image Classification[J]. Applied Ences, 2017, 7(5):447. |
[72] | 张佳琪, 张继贤, 赵争. 深度神经网络的高分三号全极化SAR图像分类方法[J]. 测绘科学, 2019, 2(44):6-11. |
ZHANG Jiaqi, ZHANGJixian, ZHAO Zhen. Classification Method of GF-3 Polarimetric SAR Image Using Deep Neural Network[J]. Science of Surveying and Mapping, 2019, 2(44):6-11. | |
[73] |
HE C, HE B K, TU M X, et al. Fully Convolutional Networks and A Manifold Graph Embedding-Based Algorithm for PolSAR Image Classification[J]. Remote Sensing, 2020, 12:1467.
doi: 10.3390/rs12091467 |
[74] |
SHELHAMER E, LONG J, DARRELL T. Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683 |
[75] |
HE C, TU M X, XIONG D H, et al. Nonliner Manifold Learning Integrated with Fully Convolutional Networks for PolSAR Image Classification[J]. Remote Sensing, 2020, 12:665.
doi: 10.3390/rs12040665 |
[76] | 陈嘉跃, 李飞. 基于特征融合的全卷积网络极化SAR分类方法[J]. 电子测量技术, 2022, 45(1):104-110. |
CHEN Jiayue, LI Fei. Fully Convolutional Network PolSAR Classification Based on Features Fusion[J]. Electronic Measurement Technology, 2022, 45(1):104-110. | |
[77] | DING L, ZHENG K, LIN D, et al. MP-ResNet:Multipath Residual Network for the Semantic Segmentation of High-Resolution PolSAR Images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19:1-5. |
[78] | 王云艳, 罗冷坤, 王重阳. Deeplab网络的极化合成孔径雷达图像分类[J]. 测绘科学, 2020, 45(6):1-29. |
WANG Yunyan, LUO Lengkun, WANG Chongyang. PolSAR Image Classification Based on Deeplab Network[J]. Science of Surveying and Mapping, 2020, 45(6):1-29. | |
[79] |
CHEN L, PAPANDREOU G, KOKKINOS I, et al. Deeplab:Semantic Image Segmentation with Deep Convolutional Nets,Atrous Convolution,And Fully Connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
doi: 10.1109/TPAMI.2017.2699184 |
[80] | 张腊梅, 陈泽茜, 邹斌. 基于3D卷积神经网络的PolSAR图像精细分类[J]. 红外与激光工程, 2018, 47(7):1-8. |
ZHANG Lamei, CHEN Zeqian, ZOU Bin. Fine Classification of Polarimetric SAR Images Based on 3D Convolutional Neural Network[J]. Infrared and Laser Engineering, 2018, 47(7):1-8. | |
[81] |
DONG H W, ZHANG L M, ZOU B. PolSAR Image Classification with Lightweight 3D Convolutional Networks[J]. Remote Sensing, 2020, 12:396.
doi: 10.3390/rs12030396 |
[82] | 王睿川, 王岩飞. 基于半监督空间-通道选择性卷积核网络的极化SAR图像地物分类[J]. 雷达学报, 2021, 10(4):516-530. |
WANG Ruichuan, WANG Yanfei. Terrain Classification of Polarimetric SAR Images Using Semi-Supervised Spatial-Channel Selective Kernel Network[J]. Journal of Radars, 2021, 10(4):516-530. | |
[83] | ZHANG S, YIN Q, NI J, et al. PolSAR Image Classification with Small Sample Learning Based on CNN and CRF[C]//Proceeding of Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). Piscataway:IEEE, 2019:1-5. |
[84] |
BI H X, XU F, WEI Z Q, et al. An Active Deep Learning Approach for Minimally Supervised PolSAR Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):9378-9395.
doi: 10.1109/TGRS.36 |
[85] |
JIAO C Z, WANG X L, GOU S P, et al. Self-Paced Convolutional Neural Network for PolSAR Image Classification[J]. Remote Sensing, 2019, 11:424.
doi: 10.3390/rs11040424 |
[86] |
REN B, ZHAO YY, HOU B, et al. A Mutual Information-Based Self-Supervised Learning Model for PolSAR Land Cover Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11):9224-9237.
doi: 10.1109/TGRS.2020.3048967 |
[87] | ZHANG L M, ZHANG S Y, ZOU B, et al. Unsupervised Deep Representation Learning and Few-Shot Classification of PolSAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 60:1-16. |
[88] |
BI H X, SUN J, XU Z B. A Graph-Based Semisupervised Deep Learning Model for PolSAR Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4):2116-2132.
doi: 10.1109/TGRS.36 |
[89] | HOU B, GUAN JJ, WU Q, et al. Semi-Supervised Classification of PolSAR Image Incorporating Labels’ Semantic Priors[J]. IEEE Geoscience and Remote Sensing Letters, 2019:1-5. |
[90] |
GUO Y W, SUN ZZ, QU R, et al. Fuzzy Superpixels Based Semi-Supervised Similarity-Constrained CNN for PolSAR Image Classification[J]. Remote Sensing, 2020, 12:1-18.
doi: 10.3390/rs12010001 |
[91] |
ZHANG Z M, WANG H P, XU F, et al. Complex-Valued Convolutional Neural Network and Its Application in Polarimetric SAR Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12):7177-7188.
doi: 10.1109/TGRS.2017.2743222 |
[92] | QIN XX, HU T, ZOU H X, et al. PolSAR Image Classification via Complex-valued Convolutional Neural Network Combining Measured Data and Artificial Features[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway:IEEE, 2019:3209-3212. |
[93] |
XIE W, MA G N, ZHAO F, et al. PolSAR Image Classification via a Novel Semi-Supervised Recurrent Complex-Valued Convolution Neural Network[J]. Neurocomputing, 2020, 388:255-268.
doi: 10.1016/j.neucom.2020.01.020 |
[94] | ADUGNA G, MULLISSA C P, ALFRED S. PolSARNet:A Deep Fully Convolutional Network for Polarimetric SAR Image Classification[J]. IEEE Journal of Selected Topics in Applied Observations and Remote Sensing, 2019, 12(12):5300-5309. |
[95] |
TAN X F, LI M, ZHANG P, et al. Complex-Valued 3-D Convolutional Neural Network for PolSAR Image Classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6):1022-1026.
doi: 10.1109/LGRS.8859 |
[96] |
CAO Y C, WU Y, ZHANG P, et al. Pixel-Wise PolSAR Image Classification via a Novel Complex-Valued Deep Fully Convolutional Network[J]. Remote Sensing, 2019, 11:2653.
doi: 10.3390/rs11222653 |
[97] | MULLISSA A G, PERSELLO C, REICHE J. Despeckling Polarimetric SAR Data Using a Multistream Complex-Valued Fully Convolutional Network[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19:1-5. |
[98] |
LIU X, JIAO L C, TANG X, et al. Polarimetric Convolutional Network for PolSAR Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5):3040-3054.
doi: 10.1109/TGRS.36 |
[99] |
SHANG R H, WANG GG, MICHAEL A, et al. Complex-Valued Convolutional Autoencoder and Spatial Pixel-Squares Refinement for Polarimetric SAR Image Classification[J]. Remote Sensing, 2019, 11:522.
doi: 10.3390/rs11050522 |
[100] | 肖东凌, 刘畅. 基于精调的膨胀编织-交叉卷积网络(FDGC-CNN)的极化SAR地物分类[J]. 雷达学报, 2019, 8(4):479-488. |
XIAO Dongling, LIU Chang. PolSAR Terrain Classification Based on Fine-Tuned Dilated Group-Cross Convolution Neural Network[J]. Journal of Radars, 2019, 8(4):479-488. | |
[101] |
TAN X F, LI M, ZHANG P, et al. Deep Triplet Complex-Valued Network for PolSAR Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12):10179-10196.
doi: 10.1109/TGRS.2021.3053013 |
[102] | GUO Y H, WANG S, SONG G X, et al. PolSAR Terrain Classification Based on Denoising-CNN[C]//Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway:IEEE, 2019:3213-3216. |
[103] | LIU F, WANG J, TANG X, et al. Adaptive Graph Convolutional Network for PolSAR Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:1-14. |
[104] |
DONG H W, ZOU B, ZHANG L M, et al. Automatic Design of CNNs via Differentiable Neural Architecture Search for PolSAR Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9):6362-6375.
doi: 10.1109/TGRS.36 |
[105] |
ZHANG X Z, XIA J L, TAN X H, et al. PolSAR Image Classification via Learned Superpixels and QCNN Integrating Color Features[J]. Remote Sensing, 2019, 11:1831.
doi: 10.3390/rs11151831 |
[106] | 王云艳, 何楚, 赵守能, 等. 基于多层反卷积网络的SAR图像分类[J]. 武汉大学学报:自然科学版, 2015, 40(10):1371-1346. |
WANG Yunyan, HE Chu, ZHAO Shouneng, et al. Classification of SAR Images Based on Deep Deconvolutional Network[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10):1371-1346. | |
[107] | 赵泉华, 谢凯浪, 王光辉, 等. 全卷积网络和条件随机场相结合的全极化SAR土地覆盖分类[J]. 测绘学报, 2020, 1(49):65-78. |
ZHAO Quanhua, XIE Kailiang, WANG Guanghui, et al. Land Cover Classification of Polarimetric SAR with Fully Convolution Network and Conditional Random Field[J]. Acta Geodaetica et Cartographica Sinica, 2020, 1(49):65-78. | |
[108] | HUANG K, NIE W, LUO N X. Fully Polarized SAR imagery Classification Based on Deep Reinforcement Learning Method Using Multiple Polarimetric Features[J]. IEEE Journal of Selected Topics in Applied Observations and Remote Sensing, 2019, 12(10):3719-3730. |
[109] | NIE W, HUANG K, YANG J, et al. A Deep Reinforcement Learning-Based Framework for PolSAR Imagery Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60(60):1-15. |
[1] | 王娟,刘子杉,武明虎,陈关海,郭力权. 融合超分辨率重建技术的多尺度目标检测算法[J]. 西安电子科技大学学报, 2023, 50(3): 122-131. |
[2] | 周硕,周一青,张冲,邢旺. ResNet使能的OTFS联合信道估计和信号检测[J]. 西安电子科技大学学报, 2023, 50(3): 19-30. |
[3] | 王柯俨,成吉聪,黄诗芮,蔡坤伦,王威然,李云松. 融合上下文感知注意力的低光图像去雾网络[J]. 西安电子科技大学学报, 2023, 50(2): 23-32. |
[4] | 张强, 杨欣朋, 赵世祥, 卫栋栋, 韩臻. 注意力机制的SAR图像车辆目标检测网络[J]. 西安电子科技大学学报, 2023, 50(1): 36-47. |
[5] | 刘晓雯, 郭继昌, 郑司达. 采用渐进式网络的弱监督显著性目标检测算法[J]. 西安电子科技大学学报, 2023, 50(1): 48-57. |
[6] | 刘博翀, 蔡怀宇, 杨诗远, 李灏天, 汪毅, 陈晓冬. 一种用于自动驾驶场景的轻量级语义分割网络[J]. 西安电子科技大学学报, 2023, 50(1): 118-128. |
[7] | 张泽欢, 刘强, 国狄非. 面向大规模零样本图像识别的高效算法框架[J]. 西安电子科技大学学报, 2022, 49(6): 103-110. |
[8] | 李娇娇, 刘志强, 宋锐, 李云松. 一种改进Unet网络的遥感影像分割算法[J]. 西安电子科技大学学报, 2022, 49(6): 67-75. |
[9] | 张兆宇,田春娜,周恒,田西兰. 联合在线分类的双注意力RGBT孪生网络跟踪[J]. 西安电子科技大学学报, 2022, 49(6): 76-85. |
[10] | 任佳兴, 曹玉东, 曹睿, 闫佳. 一种采用动态子空间的小样本图像分类算法[J]. 西安电子科技大学学报, 2022, 49(5): 166-174. |
[11] | 齐佩汉,李冰,谢爱平,高向兰. 欠采样跳频通信信号深度学习重构方法[J]. 西安电子科技大学学报, 2022, 49(4): 1-7. |
[12] | 马仑,刘鑫,赵斌,王瑞平,廖桂生,张亚静. 利用多头-连体神经网络实现障碍行为识别[J]. 西安电子科技大学学报, 2022, 49(4): 100-108. |
[13] | 井佩光,李亚鑫,苏育挺. 一种多模态特征编码的短视频多标签分类方法[J]. 西安电子科技大学学报, 2022, 49(4): 109-117. |
[14] | 刘迪,郭继昌,汪昱东,张怡. 融合注意力机制的多尺度显著性目标检测网络[J]. 西安电子科技大学学报, 2022, 49(4): 118-126. |
[15] | 张静,张雪英,陈桂军,闫超. 结合3D-CNN和频-空注意力机制的EEG情感识别[J]. 西安电子科技大学学报, 2022, 49(3): 191-198. |
|