西安电子科技大学学报 ›› 2023, Vol. 50 ›› Issue (6): 1-12.doi: 10.19665/j.issn1001-2400.20231006

• 电磁空间安全专栏 •    下一篇

一种聚类辅助的智能频谱分配技术研究

赵浩钦1(),杨政2(),司江勃1(),石嘉1(),严少虎2(),段国栋2()   

  1. 1.西安电子科技大学 空天地一体化综合业务网全国重点实验室,陕西 西安 710071
    2.中国电子科技集团公司第二十九研究所,四川 成都 610036
  • 收稿日期:2023-04-12 出版日期:2023-12-20 发布日期:2024-01-22
  • 通讯作者: 司江勃(1980—),男,教授,E-mail:jbsi@xidian.edu.cn
  • 作者简介:赵浩钦(2000—),男,西安电子科技大学博士研究生,E-mail:21011210397@stu.xidian.edu.cn;|杨政(1974—),男,研究员级高级工程师,E-mail:Yzheng@cetc.com.cn;|石嘉(1987—),男,副教授,E-mail:jiashi@xidian.edu.cn;|严少虎(1976—),男,研究员级高级工程师,E-mail:shaohu@cetc.com.cn;|段国栋(1984—),男,高级工程师,E-mail:guodong@cetc.com.cn
  • 基金资助:
    电磁空间作战与应用重点实验室基金;陕西省杰出青年科学基金(2022JC-50);国家自然科学基金(61971337)

Research on a clustering-assisted intelligent spectrum allocation technique

ZHAO Haoqin1(),YANG Zheng2(),SI Jiangbo1(),SHI Jia1(),YAN Shaohu2(),DUAN Guodong2()   

  1. 1. State Key Laboratory of Integrated Services Networks,Xidian University,Xi’an 710071,China
    2. Southwest China Research Institute of Electronic Equipment,Chengdu 610036,China
  • Received:2023-04-12 Online:2023-12-20 Published:2024-01-22

摘要:

针对传统频谱分配方案在大规模、高动态电磁频谱战系统中频谱利用率低的问题,开展智能频谱分配技术研究。首先构建复杂高动态电磁频谱作战场景,并在雷达、通信、干扰等多类型设备共存条件下,将复杂电磁环境频谱分配建模为最大化接入设备数量的优化问题。其次,提出一种基于聚类辅助的智能频谱分配算法,针对集中式资源分配算法面临动作空间维度爆炸的问题,使用多DDQN网络表征各节点的决策信息。再基于肘部法则与K-means++算法,提出多节点协同方法,簇内节点通过共享动作信息进行链式决策、簇间节点独立决策,辅助DDQN算法智能分配资源。通过设计状态、动作空间和奖励函数,并采用变学习速率实现算法快速收敛,最终各节点能够根据电磁环境变化,动态分配频/能等多维资源。仿真结果表明:在相同电磁环境下,当节点数为20时,所提算法的可接入设备数较贪婪算法提升了约80%,较遗传算法提升约30%,更适用于动态电磁环境下多设备的频谱分配。

关键词: 动态电磁环境, 智能频谱分配, 频谱效率, 聚类分析, 深度强化学习

Abstract:

Aiming at the problem of low spectrum utilization of the traditional spectrum allocation scheme in a large-scale and high dynamic electromagnetic spectrum warfare system,intelligent spectrum allocation technology research is carried out.In this paper,first,we construct a complex and highly dynamic electromagnetic spectrum combat scenario,and under the coexistence conditions of multiple types of equipment such as radar,communication and jamming,we model the spectrum allocation of the complex electromagnetic environment as an optimization problem to maximize the number of access devices.Second,an intelligent spectrum allocation algorithm based on clustering assistance is proposed.Aiming at the centralized resource allocation algorithm facing the problem of exploding action space dimensions,a multi-DDQN network is used to characterize the decision-making information of each node.Then based on the elbow law and K-means++ algorithm,a multi-node collaborative approach is proposed,where nodes within a cluster make chained decisions by sharing action information and nodes between clusters make independent decisions,assisting the DDQN algorithm to intelligently allocate resources.By designing the state,action space and reward function,and adopting the variable learning rate to realize the fast convergence of the algorithm,the nodes are able to dynamically allocate the multidimensional resources such as frequency/energy according to the electromagnetic environment changes.Simulation results show that under the same electromagnetic environment,when the number of nodes is 20,the number of accessible devices of the proposed algorithm is increased by about 80% compared with the number by the greedy algorithm,and about 30% compared with that by the genetic algorithm,which is more suitable for the spectrum allocation of multi-devices under dynamic electromagnetic environment.

Key words: dynamic electromagnetic environment, intelligent spectrum allocation, spectrum efficiency, cluster analysis, reinforcement learning

中图分类号: 

  • TN97