西安电子科技大学学报 ›› 2023, Vol. 50 ›› Issue (6): 133-147.doi: 10.19665/j.issn1001-2400.20230312
• 信息与通信工程 & 计算机科学与技术 • 上一篇 下一篇
收稿日期:
2023-01-03
出版日期:
2023-12-20
发布日期:
2024-01-22
通讯作者:
潘继飞(1978—),男,教授,E-mail:作者简介:
杜明洋(1994—),男,国防科技大学博士研究生,E-mail:基金资助:
DU Mingyang(),DU Meng(),PAN Jifei(),BI Daping()
Received:
2023-01-03
Online:
2023-12-20
Published:
2024-01-22
摘要:
近年来,深度神经网络在计算机视觉等领域取得了突破性进展,然而在射频信号处理领域,如电子支援侦察系统中的雷达辐射源识别任务,相关技术的发展仍处于起步阶段。在实际军事应用场景中,噪声的存在是影响深度神经网络性能发挥的关键因素。例如,在高信噪比环境下训练至收敛的深度模型分类器在处理低信噪比数据时往往性能下降严重。为了解决上述问题,提出了一种生成对抗式的去噪网络,实现了端到端的雷达信号去噪和脉内调制类型识别。该模型由生成器、鉴别器和分类器三部分组成,其中,生成器为编解码器结构,通过对称的上采样和下采样操作提取输入雷达信号中高阶特征向量,从噪声中恢复出干净信号;鉴别器则用来判断生成器输出去噪结果的真伪;在此基础上,将分类器与上述两者级联,使得去噪结果符合分类所需的语义信息。实验结果表明,所提算法在密集噪声环境下具备高质量的信号去噪效果和较高的分类准确度;与已有算法相比,算法在低信噪比环境数据上的迁移能力具有一定的优越性。
中图分类号:
杜明洋, 杜蒙, 潘继飞, 毕大平. 基于生成对抗网络的雷达脉内信号去噪与识别[J]. 西安电子科技大学学报, 2023, 50(6): 133-147.
DU Mingyang, DU Meng, PAN Jifei, BI Daping. Generative adversarial model for radar intra-pulse signal denoising and recognition[J]. Journal of Xidian University, 2023, 50(6): 133-147.
表4
4种模型在RADIOML 2018.01A数据集上不同信噪比环境、不同噪声类型的分类准确度对比 %"
模型 | 噪声类型 | 训练阶段Ⅰ | 训练阶段Ⅱ | 测试准确度 | 平均值 | |
---|---|---|---|---|---|---|
1 dB | -1 dB | |||||
脉冲噪声 | 43.27 | 77.25 | 24.24 | 5.92 | 35.80 | |
UNet | 高斯白噪声 | 71.50 | 83.83 | 56.49 | 40.84 | 60.40 |
高斯色噪声 | 67.20 | 83.85 | 51.55 | 33.96 | 56.50 | |
脉冲噪声 | 47.80 | 79.78 | 20.92 | 9.44 | 36.70 | |
ResUNet | 高斯白噪声 | 77.27 | 81.89 | 56.22 | 43.39 | 60.50 |
高斯色噪声 | 80.70 | 82.14 | 58.74 | 45.27 | 62.20 | |
脉冲噪声 | 76.60 | 82.50 | 23.00 | 9.50 | 38.30 | |
GC | 高斯白噪声 | 71.00 | 85.70 | 63.50 | 52.30 | 67.20 |
高斯色噪声 | 71.40 | 85.70 | 61.70 | 49.70 | 65.70 | |
脉冲噪声 | 54.30 | 74.50 | 20.10 | 7.30 | 34.00 | |
GN | 高斯白噪声 | 83.30 | 85.40 | 56.40 | 41.30 | 61.00 |
高斯色噪声 | 82.90 | 85.20 | 56.90 | 41.40 | 61.20 |
[1] | RIYAZ S, SANKHE K, IOANNIDIS S, et al. Deep Learning Convolutional Neural Networks for Radio Identification[J]. IEEE Communications Magazine, 2018, 56(9):146-152. |
[2] | LIU Z M. Recognition of Multi-Function Radars via Hierarchically Mining and Exploiting Pulse Group Patterns[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 44(6):4659-4672. |
[3] | 孙丽婷, 黄知涛, 王翔, 等. 辐射源指纹特征提取方法述评[J]. 雷达学报, 2020, 9(6):1014-1031. |
SUN Liting, HUANG Zhitao, WANG Xiang, et al. Overview of Radio Frequency Fingerprint Extraction in Specific Emitter Identification[J]. Journal of Radars, 2020, 9(6):1014-1031. | |
[4] | 刘明骞, 孟燕, 张卫东. 雷达辐射源识别的效能综合评估方法[J]. 西安电子科技大学学报, 2019, 46(6):1-8. |
LIU Mingqian, Meng Yan, ZHANG Weidong. Method for Comprehensive Evalution of Effectiveness of Radar Emitter Signals Recognition[J]. Journal of Xidian University, 2019, 46(6):1-8. | |
[5] | ANJANEYULU L, MURTHY N S, SARMA N. Radar Emitter Classification Using Self-Organising Neural Network Models[C]// 2008 International Conference on Recent Advances in Microwave Theory and Applications.Piscataway:IEEE, 2008:431-433. |
[6] | REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once:Unified,Real-Time Object Detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:779-788. |
[7] |
FUAD M T H, FIME A A, SIKDER D, et al. Recent Advances in Deep Learning Techniques for Face Recognition[J]. IEEE Access, 2021, 9:99112-99142.
doi: 10.1109/ACCESS.2021.3096136 |
[8] | ZHANG Z, GEIGER J, POHJALAINEN J, et al. Deep Learning for Environmentally Robust Speech Recognition:An Overview of Recent Developments[J]. ACM Transactions on Intelligent Systems and Technology(TIST), 2018, 9(5):1-28. |
[9] |
ZHANG H, ZHOU F, WU Q, et al. A Novel Automatic Modulation Classification Scheme Based on Multi-Scale Networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 8(1):97-110.
doi: 10.1109/TCCN.2021.3091730 |
[10] |
HUANG S, JIANG Y, GAO Y, et al. Automatic Modulation Classification Using Contrastive Fully Convolutional Network[J]. IEEE Wireless Communications Letters, 2019, 8(4):1044-1047.
doi: 10.1109/LWC.5962382 |
[11] |
DU M, HE X, CAI X, et al. Balanced Neural Architecture Search and its Application in Specific Emitter Identification[J]. IEEE Transactions on Signal Processing, 2021, 69:5051-5065.
doi: 10.1109/TSP.2021.3107633 |
[12] | O’SHEA T J, CORGAN J, CLANCY T C. Convolutional Radio Modulation Recognition Networks[C]// International Conference on Engineering Applications of neural networks.Heidelberg:Springer, 2016:213-226. |
[13] | O’SHEA T J, WEST N. Radio Machine Learning Dataset Generation with GNU Radio[C]// Proceedings of the GNU Radio Conference.Boulder:GNU, 2016:1-6. |
[14] | HAUSER S C, HEADLEY W C, MICHAELS A J. Signal Detection Effects on Deep Neural Networks Utilizing Raw IQ for Modulation Classification[C]// MILCOM 2017-2017 IEEE Military Communications Conference(MILCOM).Piscataway:IEEE, 2017:121-127. |
[15] |
YILDIRIM A, KIRANYAZ S. 1D Convolutional Neural Networks Versus Automatic Classifiers for Known LPI Radar Signals under White Gaussian Noise[J]. IEEE Access, 2020, 8:180534-180543.
doi: 10.1109/Access.6287639 |
[16] |
O’SHEA T J, ROY T, CLANCY T C. Over-the-Air Deep Learning Based Radio Signal Classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1):168-179.
doi: 10.1109/JSTSP.2018.2797022 |
[17] |
HUYNH T T, HUA C H, PHAM Q V, et al. MCNet:An Efficient CNN Architecture for Robust Automatic Modulation Classification[J]. IEEE Communications Letters, 2020, 24(4):811-815.
doi: 10.1109/COML.4234 |
[18] | SZEGEDY C, LIU W, JIA Y, et al. Going Deeper with Convolutions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2015:1-9. |
[19] |
ZHANG H, YUAN L, WU G, et al. Automatic Modulation Classification Using Involution Enabled Residual Networks[J]. IEEE Wireless Communications Letters, 2021, 10(11):2417-2420.
doi: 10.1109/LWC.2021.3102069 |
[20] | LI D, HU J, WANG C, et al. Involution:Inverting the Inherence of Convolution for Visual Recognition[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2021:12321-12330. |
[21] | HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:770-778. |
[22] | WEST N E, O'SHEA T. Deep Architectures for Modulation Recognition[C]// 2017 IEEE International Symposium on Dynamic Spectrum Access Networks(DySPAN).Piscataway:IEEE, 2017:1-6. |
[23] |
DU M, ZHONG P, CAI X, et al. DNCNet:Deep Radar Signal Denoising and Recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4):3549-3562.
doi: 10.1109/TAES.2022.3153756 |
[24] |
HU S, PEI Y, LIANG P P, et al. Deep Neural Network for Robust Modulation Classification under Uncertain Noise Conditions[J]. IEEE Transactions on Vehicular Technology, 2019, 69(1):564-577.
doi: 10.1109/TVT.25 |
[25] | 刘松涛, 赵帅, 汪慧阳. 雷达辐射源识别技术新进展[J]. 中国电子科学研究院学报, 2022, 17(6):523-533. |
LIU Songtao, ZHAO Shuai, WANG Huiyang. New Development on the Technology of Radar Emitter Identification[J]. Journal of CAEIT, 2022, 17(6):523-533. | |
[26] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Networks[J]. Communications of the ACM, 2020, 63(11):139-144.
doi: 10.1145/3422622 |
[27] |
LIU D, WEN B, JIAO J, et al. Connecting Image Denoising and High-Level Vision Tasks via Deep Learning[J]. IEEE Transactions on Image Processing, 2020, 29:3695-3706.
doi: 10.1109/TIP.83 |
[28] | 赵集. Alpha稳定分布环境下自适应滤波算法研究[D]. 成都: 电子科技大学, 2020. |
[29] | 于浩洋, 尹良, 李书芳. 生成对抗网络小样本雷达调制信号识别算法[J]. 西安电子科技大学学报, 2021, 48(6):96-104. |
YU Haoyang, YIN Liang, LI Shufang, et al. Recognition Algorithm for the Little Sample Radar Modulation Signal Based on the Generative Adversarial Network[J]. Journal of Xidian University, 2021, 48(6):96-104. | |
[30] |
LECUN Y, BENGIO Y, HINTON G. Deep Learning[J]. Nature, 2015, 521(7553):436-444.
doi: 10.1038/nature14539 |
[31] |
SUN J, XU G, REN W, et al. Radar Emitter Classification Based on Unidimensional Convolutional Neural Network[J]. IET Radar,Sonar & Navigation, 2018, 12(8):862-867.
doi: 10.1049/rsn2.v12.8 |
[32] | BROOKS T, MILDENHALL B, XUE T, et al. Unprocessing Images for Learned Raw Denoising[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:11036-11045. |
[33] | ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein Generative Adversarial Networks[C]// International Conference on Machine Learning(PMLR). New York: ACM, 2017:214-223. |
[34] | LUKE M, BEN P, DAVID P, et al. Unrolled Generative Adversarial Networks(2017)[J/OL].[2017-05-12]. https://arxiv.org/abs/1611.02163. |
[35] | GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved Training of Wasserstein GANs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017:5769-5779. |
[36] | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM:Visual Explanations from Deep Networks via Gradient-Based Localization[C]// Proceedings of the IEEE International Conference on Computer Vision.Piscataway:IEEE, 2017:618-626. |
[37] | RONNEBERGER O, FISCHER P, BROX T. U-Net:Convolutional Networks for Biomedical Image Segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Heidelberg:Springer, 2015:234-241. |
[38] |
DIAKOGIANNIS F I, WALDNER F, CACCETTA P, et al. ResUNet-a:A Deep Learning Framework for Semantic Segmentation of Remotely Sensed Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162:94-114.
doi: 10.1016/j.isprsjprs.2020.01.013 |
[1] | 廖晓闽, 韩双利, 朱璇, 林初善, 王海鹏. 无人机干扰辅助认知隐蔽通信资源优化算法[J]. 西安电子科技大学学报, 2023, 50(6): 75-83. |
[2] | 张可涵,李红艳,刘文慧,王鹏. 面向流量预测的时间相关图卷积网络构建方法[J]. 西安电子科技大学学报, 2023, 50(5): 11-20. |
[3] | 范文同,李震宇,张涛,罗向阳. 基于隐写噪声深度提取的JPEG图像隐写分析[J]. 西安电子科技大学学报, 2023, 50(4): 157-169. |
[4] | 王侃, 王孟洋, 刘鑫, 田国强, 李川, 刘伟. 融合自注意力机制与CNN-BiGRU的事件检测[J]. 西安电子科技大学学报, 2022, 49(5): 181-188. |
[5] | 时云龙,袁文浩,胡少东,娄迎曦. 一种用于实时语音增强的卷积准循环网络[J]. 西安电子科技大学学报, 2022, 49(3): 183-190. |
[6] | 杜李旭弘,陈杰,杨小雪. 一种结合GAN的定向口令猜测方案[J]. 西安电子科技大学学报, 2022, 49(3): 129-136. |
[7] | 周鹏,杨军. 索引边缘几何卷积神经网络用于点云分类[J]. 西安电子科技大学学报, 2022, 49(2): 207-217. |
[8] | 须颖,刘帅,邵萌,岳国栋,安冬. 一种多尺度GAN的低剂量CT超分辨率重建方法[J]. 西安电子科技大学学报, 2022, 49(2): 228-236. |
[9] | 高杰,霍智勇. 一种门控卷积生成对抗网络的图像修复算法[J]. 西安电子科技大学学报, 2022, 49(1): 216-224. |
[10] | 李源,崔玉爽,王伟. 一种基于字词双通道网络的文本情感分析方法[J]. 西安电子科技大学学报, 2021, 48(6): 179-186. |
[11] | 于浩洋,尹良,李书芳,吕顺. 生成对抗网络小样本雷达调制信号识别算法[J]. 西安电子科技大学学报, 2021, 48(6): 96-104. |
[12] | 董如婵,焦李成,赵进,沈维燕. 一种深度融合机制的遥感图像目标检测技术[J]. 西安电子科技大学学报, 2021, 48(5): 128-138. |
[13] | 孙彦景,魏力,张年龙,云霄,董锴文,葛敏,程小舟,侯晓峰. 联合DD-GAN和全局特征的井下人员重识别方法[J]. 西安电子科技大学学报, 2021, 48(5): 201-211. |
[14] | 王军军,孙岳,李颖. 一种生成对抗网络的遥感图像去云方法[J]. 西安电子科技大学学报, 2021, 48(5): 23-29. |
[15] | 杨静波,赵启军,吕泽均. 维度情感模型下的表情图像生成及应用[J]. 西安电子科技大学学报, 2021, 48(5): 30-37. |
|