J4 ›› 2010, Vol. 37 ›› Issue (2): 254-259.doi: 10.3969/j.issn.1001-2400.2010.02.013

• 研究论文 • 上一篇    下一篇

一种新的Contourlet域鲁棒水印算法

同鸣;冯玮;姬红兵   

  1. (西安电子科技大学 电子工程学院,陕西 西安  710071)
  • 收稿日期:2008-12-12 出版日期:2010-04-20 发布日期:2010-06-03
  • 通讯作者: 同鸣
  • 作者简介:同鸣(1963-),女,教授,博士,E-mail: mtong@xidian.edu.cn.
  • 基金资助:

    陕西省自然科学基金资助项目(SJ08F15)

A new robust watermark algorithm in the contourlet domain

TONG Ming;FENG Wei;JI Hong-bing   

  1. (School of Electronic Engineering, Xidian Univ., Xi'an  710071, China)
  • Received:2008-12-12 Online:2010-04-20 Published:2010-06-03
  • Contact: Tong Ming

摘要:

为提高水印算法的鲁棒性和效率,提出了一种基于图像纹理特征的自适应鲁棒水印算法.选定灰度共生矩阵的能量、熵、对比度3种纹理特征量,通过Mean Shift聚类算法快速准确地提取图像强纹理区域,在图像强纹理的Contourlet变换域大系数中添加水印,通过纹理聚类结果自适应选择水印嵌入位置,控制嵌入强度.实验表明,这种算法对多种攻击(高斯低通滤波、维纳滤波、中值滤波、椒盐加噪、高斯加噪、JPEG攻击、剪切攻击)表现出强的鲁棒性,收敛速度明显优于基于FCM聚类以及K均值聚类的水印算法.

关键词: Mean Shift, Contourlet变换, 灰度共生矩阵, 盲水印

Abstract:

In order to improve the robustness and efficiency of the watermark algorithm, a new self-adaptive watermark algorithm based on the texture feature is proposed. This algorithm selects the energy, entropy and contrast of the gray co-occurrence matrix as texture features, rapidly and accurately extracts the strong texture region of host images by the Mean Shift fast clustering algorithm. This algorithm embeds the watermark into the big coefficients in the Contourlet domain of the image strong texture area, adaptively selects the watermark embedding locations and controls the watermark embedding strength through texture clustering outcome. The experiment shows that this algorithm has the strong robustness to the Gauss low pass filter, Wiener filter, median filtering, Salt and pepper noise, Gaussian noise, JPEG compression, shear attack, etc. This algorithm's convergence rate is better than that of both FCM clustering and K-means clustering algorithm. This algorithm has realized blind detection.

Key words: Mean Shift, Contourlet transform, gray level co-occurrence matrix, blind watermark