J4 ›› 2011, Vol. 38 ›› Issue (6): 103-107+122.doi: 10.3969/j.issn.1001-2400.2011.06.016

• 研究论文 • 上一篇    下一篇

航姿参考系统中一种自适应卡尔曼滤波算法

田易;孙金海;李金海;阎跃鹏   

  1. (中国科学院 微电子研究所,北京  100029)
  • 收稿日期:2010-09-03 出版日期:2011-12-20 发布日期:2011-11-29
  • 通讯作者: 田易;
  • 作者简介:田易(1984-),女,中国科学院硕士研究生,E-mail: tianyi1984@126.com
  • 基金资助:

    多系统GNSS差分精密定位通用算法研究与软件设计资助项目(2009AA12Z314)

Algorithm for the adaptive Kalman filter in AHRS

TIAN Yi;SUN Jinhai;LI Jinhai;YAN Yuepeng   

  1. (Inst. of Microelectronics, Chinese Academy of Sci., Beijing  100029, China)
  • Received:2010-09-03 Online:2011-12-20 Published:2011-11-29
  • Contact: TIAN Yi

摘要:

在航姿参考系统测量载体姿态的过程中,由于观测噪声不确定,严重影响了常规卡尔曼滤波结果的精度.另外,当系统受到干扰而使观测噪声突然改变时,甚至会导致滤波发散.提出一种航姿参考系统自适应卡尔曼滤波算法,能够根据观测数据来自适应调整观测噪声,从而提高卡尔曼滤波精度,改善系统的鲁棒性.仿真表明,当观测噪声时变时,常规卡尔曼滤波结果明显发散,而新自适应卡尔曼滤波结果收敛良好,在系统计算复杂度没有明显增加的前提下,系统的稳定性得到了明显提高.

关键词: 航姿参考系统, 自适应滤波, 卡尔曼滤波, 模糊控制

Abstract:

Due to the uncertainty of measurement noise, the accuracy of the Kalman filter is affected seriously while measuring the vehicle attitude in the Attitude and Heading Reference System(AHRS). The sudden change of measurement noise brought by interference of the system even leads to filter divergence. An algorithm for the adaptive Kalman Filter used in AHRS is presented in this paper, which is able to estimate the measurement noise in real time according to observation data and improve the accuracy of the Kalman Filter. Simulation result shows that the results of the Kalman filter diverge clearly even though the measurement noise varies, and that the adaptive Kalman filter results converge very well. The system stability is markedly improved without significant increase in computing complexity.

Key words: attitude and heading reference system, adaptive filter, Kalman filter, fuzzy control

中图分类号: 

  • V241.62