J4 ›› 2012, Vol. 39 ›› Issue (5): 186-191.doi: 10.3969/j.issn.1001-2400.2012.05.031

• 研究论文 • 上一篇    下一篇

弛豫锗硅减压化学气相淀积的CFD模型及仿真

戴显英;郑若川;郭静静;张鹤鸣;郝跃;邵晨峰;吉瑶;杨程   

  1. (西安电子科技大学 宽禁带半导体材料与器件教育部重点实验室,陕西 西安  710071)
  • 收稿日期:2012-04-11 出版日期:2012-10-20 发布日期:2012-12-13
  • 通讯作者: 戴显英
  • 作者简介:戴显英(1961-),男,教授,E-mail: xydai@xidian.edu.cn.
  • 基金资助:

    国家重点基础研究发展计划(973)资助项目(6139801-1)

CFD modeling of relaxation SiGe RPCVD

DAI Xianying;ZHENG Ruochuan;GUO Jingjing;ZHANG Heming;HAO Yue;SHAO Chenfeng;JI Yao;YANG Cheng   

  1. (Ministry of Education Key Lab. of Wide Band-Gap Semiconductor Materials and Devices, Xidian Univ., Xi'an  710071, China)
  • Received:2012-04-11 Online:2012-10-20 Published:2012-12-13
  • Contact: DAI Xianying

摘要:

基于SiGe材料化学气相淀积(CVD)生长原理,针对减压化学气相淀积 (RPCVD)系统,建立了弛豫锗硅RPCVD的计算流体动力学仿真模型及相应的流体模型,采用Fluent软件对流量、压强、基座转速等工艺参数对反应室中气体密度场和速度场的影响进行了模拟仿真及分析.模拟结果表明,流量为50L/min、压强为2666.44Pa、基座转速为35r/min时,基座上方流场的均匀性最佳.采用仿真优化的工艺条件进行了弛豫SiGe的RPCVD实验,其SiGe薄膜厚度分布实验结果与弛豫SiGe前驱体SiH2Cl2的Fluent浓度分布模拟结果一致,验证了该模型的正确性.

关键词: 弛豫锗硅, 减压化学气相淀积, 计算流体动力学模型, 密度分布

Abstract:

Based on the CVD growth principle of SiGe materials,CFD (Computational Fluid Dynamics) simulation model about kinetics of relaxation SiGe and the corresponding fluid model are built,for the reduced pressure chemical vapor deposition (RPCVD) system. We simulate and analyze the effects of flow, pressure, and rotation speed on the gas density field and the velocity field in the reaction chamber, by using CFD simulation software named Fluent. According to simulation results, when flow is 50L/min, pressure is 2666.44Paand  rotation speed is 35r/min, the uniformity of the flow field above the substrate is the best. We carry out the relaxation SiGe RPCVD experiment under optimized process conditions, and experimental results of SiGe film thickness distribution is consistent with the simulation result about the Fluent concentration distribution of the relaxation SiGe precursor SiH2Cl2, which proves the correctness of our model.

Key words: relaxation Silicon-Germanium, reduced pressure chemical vapor deposition, computational fluid dynamics model, density distribution