J4 ›› 2013, Vol. 40 ›› Issue (5): 20-25+59.doi: 10.3969/j.issn.1001-2400.2013.05.004

• 研究论文 • 上一篇    下一篇

采用代价参考粒子滤波器估计天波雷达目标状态

卢锦;苏洪涛;水鹏朗   

  1. (西安电子科技大学 雷达信号处理国家重点实验室,陕西 西安  710071)
  • 收稿日期:2012-06-17 出版日期:2013-10-20 发布日期:2013-11-27
  • 通讯作者: 卢锦
  • 作者简介:卢锦(1984-),女,西安电子科技大学博士研究生,E-mail: lj491216@163.com.
  • 基金资助:

    国家自然科学基金资助项目(60901065,10990012)

Target state estimation of the over-the-horizon radar  using the cost-reference particle filter

LU Jin;SU Hongtao;SHUI Penglang   

  1. (National Key Lab. of Radar Signal Processing, Xidian Univ., Xi'an  710071, China)
  • Received:2012-06-17 Online:2013-10-20 Published:2013-11-27
  • Contact: LU Jin

摘要:

针对天波雷达背景噪声强度大、统计特性未知等特点,采用代价参考粒子滤波器估计天波超视距雷达目标状态,通过分析重采样过程和样本贫乏问题,提出通过归一化样本的代价和风险,或提高样本数等方式来改善样本的贫乏问题,从而提高代价参考粒子滤波器在天波雷达目标状态估计中的性能.实验结果表明,与传统的粒子滤波器相比,代价参考粒子滤波器无需背景噪声的统计信息,要求的粒子数少,计算量小.

关键词: 天波超视距雷达, 粒子滤波, 状态估计, 风险函数, 代价函数

Abstract:

The cost-reference particle filter (CRPF) is applied for estimating the state sequence of the target in the over-the-horizon radar (OTHR), where the background noise level is high and obeys unknown distribution. On the basis of analyzing the resampling process and the sample impoverishment in the CRPF, it is proposed that the sample impoverishment can be alleviated by normalizing the costs and risks, or increasing the number of particles. And the tracking performance of the CRPF in OTHR target state estimates can be improved. Simulation results illustrate that, compared with the classical particle filters, the CRPF which needs none of the statistics of the signals in the system requires a smaller number of particles and consumes a less computational resource.

Key words: over-the-horizon radar, particle filter, state estimation, risk function, cost function

中图分类号: 

  • TP302.7