J4 ›› 2014, Vol. 41 ›› Issue (2): 120-124+171.doi: 10.3969/j.issn.1001-2400.2014.02.020

• 研究论文 • 上一篇    下一篇

应变锗的导带结构计算与分析

戴显英1,2;李金龙1,2;郝跃1,2   

  1. (1. 西安电子科技大学 微电子学院,陕西 西安  710071;
    2. 西安电子科技大学 宽带隙半导体国家重点学科实验室,陕西 西安  710071)
  • 收稿日期:2013-08-09 出版日期:2014-04-20 发布日期:2014-05-30
  • 通讯作者: 戴显英
  • 作者简介:戴显英(1961-),男,教授,E-mail:xydai@xidian.edu.cn.
  • 基金资助:

    国家重点基础研究(973)资助项目(6139801-1)

Calculation and analysis of the conduction band-structure of strained Germanium

DAI Xianying1,2;LI Jinlong1,2;HAO Yue1,2   

  1. (1. School of Microelectronic, Xidian Univ., Xi'an  710071, China;
    2. State Key Lab. of Wide Bandgap Semiconductor Technology Disciplines, Xidian Univ., Xi'an  710071, China)
  • Received:2013-08-09 Online:2014-04-20 Published:2014-05-30
  • Contact: DAI Xianying

摘要:

应用胡克定律,建立了单、双轴张应力作用下应变锗在任意面内沿<001>、<110>和<111>方向的应变张量模型.根据线性形变势能理论,计算了单轴应力沿<001>、<110>和<111>方向作用下以及双轴应力在不同晶面内的应变锗导带各个能谷的谷底能级的变化情况.计算结果显示,在<001>方向的单轴应力作用下,Δ能谷带边能级分裂,且在压应力为1.8GPa时,Δ能谷的谷底能级变为最低能级.在<110>方向的单轴应力作用下,Δ能谷和L能谷带边能级分裂.在<111>方向的单轴应力作用下,L能谷带边能级分裂.并且随着应力的增加,所有能谷最低能级下降.而在双轴张应力作用下,当面内应变张量达到1.8%时,(001)面应变锗的Γ能谷最低,能级比Δ能谷最低能级还要低.这表明,应变锗由间接带隙半导体变为直接带隙半导体.所得到的结果可为应变锗半导体器件和光电器件的设计提供参考.

关键词: 应变锗, 导带能级结构, 单轴与双轴, 应变张量

Abstract:

This paper estabilishes the strained-tensor model by Hooke's law and calculates the energy-level shifts of L, Δ and Γ valleys by the deformation potential theory. By enforcing the uniaxial stress in germanium along <001> direction, the edge band of the Δ valley is split with the bottom energy-level being the lowest one among all valleys when the compressive stress is 1.8GPa. When the strained direction is <110>, the edge bands of L and Δ valleys are split. The L valley is split as the strained direction is <111>. When the biaxial tensile-strain is applied, we obtain the conclusion that the strained Ge can become the direct band gap from the indirect band gap as a tensile in-plane strain is 1.8%.

Key words: strained Ge, conduction band structure, uniaxial and biaxial, strain tensor

中图分类号: 

  • TN304.1