J4 ›› 2014, Vol. 41 ›› Issue (2): 64-70.doi: 10.3969/j.issn.1001-2400.2014.02.011

• 研究论文 • 上一篇    下一篇

MIMO雷达正交相位编码信号的代数设计方法

杜晓林;王旭;苏涛;朱文涛   

  1. (西安电子科技大学 雷达信号处理国家重点实验室,陕西 西安  710071)
  • 收稿日期:2013-01-08 出版日期:2014-04-20 发布日期:2014-05-30
  • 通讯作者: 杜晓林
  • 作者简介:杜晓林(1985-),男,西安电子科技大学博士研究生,E-mail:duxiaolin168@163.com.
  • 基金资助:

    国家自然科学基金资助项目(61001204)

Orthogonal phase coding signal design for MIMO radar via an algebraic method

DU Xiaolin;WANG Xu;SU Tao;ZHU Wentao   

  1. (National Key Lab. of Radar Signal Processing, Xidian Univ., Xi'an  710071, China)
  • Received:2013-01-08 Online:2014-04-20 Published:2014-05-30
  • Contact: DU Xiaolin

摘要:

针对多输入多输出雷达正交相位编码波形设计中数值优化方法计算量和存储量较大、效率较低的问题,提出一种代数理论设计方法.首先利用逆归约相乘法求解产生序列族所需的多项式;然后构造以该多项式为特征多项式的线性迭代方程,并通过线性移位寄存器求解而获得序列族;最后将该序列族映射为信号码集从而完成波形设计.仿真结果表明,该方法设计的波形恒模,并且具有低的自相关峰值旁瓣电平和互相关峰值电平.与数值优化方法比较,码集序列数量大,波形产生速度快.

关键词: 多输入多输出雷达, 代数方法, 波形设计, 自相关函数, 互相关函数, 本原多项式

Abstract:

For the problems of complex computation and low efficiency of the traditional numerical optimization method in the designing orthogonal phase coding signal for the MIMO radar, a method based on algebraic theory is proposed. Firstly, the inverse reduction-multiplication method to find the polynomials which are used to design the sequence families is used; then the sequence families can be generated by solving the linear recurrence equations via some linear shift registers, whose character polynomials are exactly the ones obtained in the first step; finally, the signal code sets are obtained by mapping the sequence families. Simulation results demonstrate that the autocorrelation peak side lobe level and the crosscorrelation peak level of the designed code sets are low, and the modulus of the signals is constant. Compared with the numerical optimization method, the number of sequences of the sets in this paper is large enough, and especially, the efficiency of generating the code sets is greatly improved.

Key words: multiple input multiple output radar, algebraic method, waveform design, autocorrelation, crosscorrelation, primitive polynomial

中图分类号: 

  • TN957