J4 ›› 2014, Vol. 41 ›› Issue (4): 58-63+157.doi: 10.3969/j.issn.1001-2400.2014.04.011

• 研究论文 • 上一篇    下一篇

利用窄波段像素色比的红外弱小目标检测方法

林涛;韩平丽;刘飞   

  1. (西安电子科技大学 物理与光电工程学院,陕西 西安  710071)
  • 收稿日期:2013-04-08 出版日期:2014-08-20 发布日期:2014-09-25
  • 通讯作者: 林涛
  • 作者简介:林涛(1969-),男,西安电子科技大学博士研究生,E-mail:taolin@dhld.com.cn.
  • 基金资助:

    国家部委预研基金资助项目(9140A01060110D20125)

Small target detection utilizing the narrow wavebands

LIN Tao;HAN Pingli;LIU Fei   

  1. (School of Physics and Optoelectronic Engineering, Xidian Univ., Xi'an  710071, China)
  • Received:2013-04-08 Online:2014-08-20 Published:2014-09-25
  • Contact: LIN Tao

摘要:

针对单帧红外弱小目标检测中背景抑制残差图中的目标检测问题,提出一种基于窄波段像素色比的残差图融合方法.首先在传统背景抑制获得残差图的基础上,通过计算窄波段图像的像素色比,选取适当的恒定分割率实现目标和杂波的分离,依照特定的融合准则获得信噪比较高的融合残差图;然后应用基于目标体积检测的方法对融合图像中目标能量进行集中,以获取信噪比更高的结果图.该方法的优点在于,弥补了背景抑制后的图像直接阈值分割时受杂波影响大的缺陷,能够有效降低虚警率.

关键词: 弱小目标检测, 窄波段, 色比, 体积检测, 阈值分割

Abstract:

The aim of this paper is to solve the target detection after the background suppression in infrared small target detection. A method based on the color ratio of different narrow wavebands is proposed to fuse the residual images. There are four main procedures in the whole detection: first, the background for residual images is suppressed; second, the fused residual images with improved SNR are obtained by color ratio calculation; third, the concentrated target energy in the images is obtained by employing the target volume detection method bringing a higher SNR of the image; finally, threshold segmentation would find the targets more precisely compared with traditional segmentation. The proposed method has advantages of being unacted on the clutter and reducing the false alarm rate.

Key words: small target detection, narrow waveband, color ratio, volume detection, threshold segmentation

中图分类号: 

  • TN215