J4 ›› 2014, Vol. 41 ›› Issue (5): 197-202.doi: 10.3969/j.issn.1001-2400.2014.05.033

• 研究论文 • 上一篇    下一篇

WSN中异构数据协同的目标定位方法

邢天璋1;王举1;陈晓江1;房鼎益1;杨哲2   

  1. (1. 西北大学 信息科学与技术学院,陕西 西安  710127;
    2. 西北工业大学 计算机学院,陕西 西安  710069)
  • 收稿日期:2014-01-07 出版日期:2014-10-20 发布日期:2014-11-27
  • 作者简介:邢天璋(1981-),男,讲师,E-mail: xtz@nwu.edu.cn.
  • 基金资助:

    国家科技支撑计划资助项目(2013BAK01B02, 2013BAK01B05);国家自然科学基金资助项目(61170218, 61272461);陕西省教育厅自然专项资助项目(2013JK1126, 2013JK1127);西北大学科学研究基金资助项目(12NW05);中央高校基本科研业务费专项资金资助项目(K5051203003)

Heterogeneous data synergistic location method in the WSN

XING Tianzhang1;WANG Ju1;CHEN Xiaojiang1;FANG Dingyi1;YANG Zhe2   

  1. (1. School of Information and Technology, Northwest Univ., Xi'an  710127, China;
    2. School of Computer Science, Northwestern Polytechnical Univ., Xi'an  710069, China)
  • Received:2014-01-07 Online:2014-10-20 Published:2014-11-27

摘要:

针对无线传感器网络中室外环境下的被动式目标定位问题,提出一种基于动态贝叶斯图的异构数据协同定位方法.该方法能够对异构无线网络数据相协调,完成目标被动式定位任务.首先深入分析了异构网络中可用于测距定位的三种基本被动式定位方法(基于信号强度模型,红外测距定位模型,粒子滤波定位),总结归纳了各方法的适用特点.其次,利用动态贝叶斯图,协调两种方法适用特点,推导出大规模室外被动式定位模型.仿真结果表明,笔者提出的异构数据协同定位方法能够完成被动式定位要求,与其他定位方法相比,定位精度较已有方法有所提升.

关键词: 无线传感器网络, 被动式定位, 信号强度, 红外测距, 贝叶斯图

Abstract:

For the passive localization problem, a novel method called the heterogeneous data synergistic (HDS) based on the dynamic Bayesian network is proposed, which can coordinate heterogeneous data, and localize the target in the wireless sensor network (WSN). By comprehensively analyzing the three localization models (the signal strength model, the infrared ranging model and the particle filter) in the WSN, their characteristics are summarized in brief. According to the Bayesian network and the different characteristics, the HDS is designed under the dynamic deduction. Simulation results prove that the proposed method is adequate to the passive localization, and that compared with other traditional methods, the localization accuracy is greatly improved.

Key words: wireless sensor network, passive localization, signal strength, infrared ranging, Bayesian network