J4 ›› 2015, Vol. 42 ›› Issue (3): 141-147.doi: 10.3969/j.issn.1001-2400.2015.03.024

• 研究论文 • 上一篇    下一篇

一种混沌蚁群算法的多峰函数优化方法

刘道华;倪永军;孙芳;张飞   

  1. (信阳师范学院 计算机与信息技术学院,河南 信阳  464000)
  • 收稿日期:2014-03-06 出版日期:2015-06-20 发布日期:2015-07-27
  • 通讯作者: 刘道华
  • 作者简介:刘道华(1974-),男,教授,博士,E-mail:ldhjsj@126.com.
  • 基金资助:

    国家自然科学基金资助项目(61272465, 61402393);河南省教育厅科学技术研究资助项目(14A520001)

Optimization method for multimodal functions based on chaotic ant colony algorithms

LIU Daohua;NI Yongjun;SUN Fang;ZHANG Fei   

  1. (School of Computer and Information Technology, Xinyang Normal Univ., Xinyang  464000, China)
  • Received:2014-03-06 Online:2015-06-20 Published:2015-07-27
  • Contact: LIU Daohua

摘要:

为了快速、准确地获得多峰函数的全局峰值以及局部峰值,在给出Henon混沌映射技术的基础上,提出了一种混沌蚁群算法的多峰函数优化方法.该方法将复杂函数的数值解所构成的数字字符转化为蚁群搜索路径上的城市分布网,并构建同函数变量个数相同的蚁群进行全局搜索求解,采用混沌映射技术自适应更新蚁群优化路径上的信息素量.采用低维及高维Benchmark测试函数验证该优化方法的求解性能,并同引力搜索算法以及其他文献方法作求解对比.通过对比可知,该方法在低维多峰函数优化时,其搜索效率均2倍高于其他文献方法.对于维数高于5维的高维函数,该方法的优化效率同其他文献方法基本相同,但在获得全局解及局部解的能力以及所求解的精度均远高于其他文献方法.

关键词: 混沌, 蚁群算法, 多峰函数, 优化, 自适应调整策略

Abstract:

In order to quickly and accurately obtain the global and local peaks of multimodal functions, this paper proposes an optimization method for multimodal functions based on the henon chaotic ant colony algorithm. In this method, the numerical characters composed by numerical solutions of complex functions are turned into the nodes of the city distribution network on the ants searching paths, the ant colonies whose number is the same as the number of function variables are constructed to solve the problem by global search, and chaos mapping technology is used to update the pheromones on the ant colony optimization path adaptively. The solving performance of this optimization method is verified by adopting low-dimensional and high-dimensional benchmark test functions and compared with those of gravitational search algorithms and other methods in literature. The comparison results indicate that, in low-dimensional multimodal function optimizations, the search efficiency of this method is two times higher than that of other methods in literature, when the number of dimensions of high-dimensional functions is greater than five, the optimization efficiency of this method is basically the same as that of other methods. However, the ability of obtaining all the global and local solutions and the solving accuracy are much higher than those of other methods.

Key words: chaos, ant colony algorithm, multimodal function, optimization, self-adaptive adjust tactics

中图分类号: 

  • TP202+.7