J4 ›› 2015, Vol. 42 ›› Issue (4): 114-120.doi: 10.3969/j.issn.1001-2400.2015.04.019

• 研究论文 • 上一篇    下一篇

复杂场景下声频传感器网络核稀疏表示车辆识别

王瑞1;王康晏1;冯玉田1;张海燕1;金彦亮1;张有正2   

  1. (1. 上海大学 通信与信息工程学院,上海  200444;
    2. 衢州职业技术学院,浙江 衢州  324000)
  • 收稿日期:2014-04-09 出版日期:2015-08-20 发布日期:2015-10-12
  • 通讯作者: 王瑞
  • 作者简介:王瑞(1982-),男,副教授,E-mail: rwang@shu.edu.cn.
  • 基金资助:

    国家自然科学基金资助项目(61301027, 61375015, 11274226);浙江省自然科学基金资助项目(LY14F030007)

Vehicle recognition using acoustic sensor networks in  complex scenes via kernel sparse representation

WANG Rui1;WANG Kangyan1;FENG Yutian1;ZHANG Haiyan1;JIN Yanliang1;ZHANG Youzheng2   

  1. (1. School of Communication and Information Engineering, Shanghai Univ., Shanghai  200444, China;
    2. Quzhou College of Technology, Zhejiang   324000, China)
  • Received:2014-04-09 Online:2015-08-20 Published:2015-10-12
  • Contact: WANG Rui

摘要:

提出一种基于核稀疏表示的声频传感器网络车辆识别方法.首先利用Mel频率倒谱系数提取车辆声音特征;然后采用核方法将其投影到高维特征空间以实现线性可分,将线性稀疏表示扩展到核域空间,构建过完备字典,求解核稀疏最优化问题对目标车辆进行分类.实验验证了该算法在声频数据集结构复杂的情况下,能有效地识别目标车辆,与传统的声频目标分类算法相比,提高了识别的准确率.

关键词: 核稀疏表示, Mel频率倒谱系数, 车辆识别, 复杂场景, 传感器网络

Abstract:

This paper proposes a method of vehicle recognition via kernel sparse representation using acoustic sensor networks in complex scenes. This algorithm uses the Mel frequency cepstral coefficients to extract the acoustic features of vehicles and maps them into a high-dimensional feature space with a kernel function to get linearly separable samples. After extending sparse representation to the kernel space and constructing the over-complete dictionary, the objective vehicles will be recognized by solving the optimization problem. Experiments show that the proposed algorithm gives good performance on vehicle recognition under the circumstance of complex data sets. Compared with other traditional acoustic classification algorithms, the method improves the precision of recognition.

Key words: kernel sparse representation, Mel frequency cepstral coefficients, vehicle recognition, complex scenes, sensor networks