西安电子科技大学学报

• 研究论文 • 上一篇    下一篇

混沌神经网络与CPG的作用机制

马振鹏;吴宗法   

  1. (同济大学 经济与管理学院,上海  201804)
  • 收稿日期:2015-09-22 出版日期:2016-10-20 发布日期:2016-12-02
  • 通讯作者: 吴宗法
  • 作者简介:马振鹏(1974-),男,同济大学博士研究生, E-mail:mazhen7@126.com.
  • 基金资助:

    国家自然科学基金资助项目(51179081)

Interaction between the chaotic neural network and the CPG

MA Zhenpeng;WU Zongfa   

  1. (School of Economics & Management, Tongji Univ., Shanghai  201804, China)
  • Received:2015-09-22 Online:2016-10-20 Published:2016-12-02
  • Contact: WU Zongfa

摘要:

大脑皮层是一个具有混沌特性的非线性系统,中枢模式发生器可产生节律性运动.依据生物学经验,中枢模式发生器受大脑皮层控制,但两者作用机制的研究对于生物运动控制仍是一个开放性问题.文中建立了混沌神经网络与中枢模式发生器相互作用的模型和状态方程,通过分岔变化对模型的动态特性进行分析,说明混沌神经网络与中枢模式发生器间的相互工作机制,以及中枢模式发生器参数对模型的影响.同时,提出了大脑皮层有许多稳定点模式与步态模式相对应,大脑皮层模式的改变可控制步态模式的改变.研究结果表明,可通过调整大脑皮层自身外部输入和中枢模式发生器反馈回大脑皮层的值,来改变大脑皮层模式.

关键词: 中枢模式发生器, 混沌神经网络, 大脑皮层, 分岔, 仿真

Abstract:

The cerebral cortex is a chaotic nonlinear system. The Central Pattern Generator(CPG) can generate a rhythmic movement. According to biological knowledge, the CPG is controlled by the central nervous. But the study of the mechanism for biological motion control is still an open question. In this paper, we establish the model for depicting the interaction between the chaotic neural network and CPG. Bifurcation analysis and phase are used to describe changes in system behavior and show the interaction mechanism. In addition, the influences of CPG parameters on the model are discussed. Many modes described at state equilibrium points in the cerebral cortex correspond to gait patterns, and the change of state equilibrium points in the cerebral cortex leads to the change of gait patterns. At the same time, the results show that the brain cortex patterns can be changed by adjusting the value of the brain cortex' external input and CPG's feedback to the cerebral cortex.

Key words: central pattern generator, chaotic neural network, cerebral cortex, bifurcation, simulation