西安电子科技大学学报

• 研究论文 • 上一篇    下一篇

利用子空间改进的K-SVD语音增强算法

郭欣;贾海蓉;王栋   

  1. (太原理工大学 信息工程学院,山西 太原 030024)
  • 收稿日期:2015-08-28 出版日期:2016-12-20 发布日期:2017-01-19
  • 通讯作者: 贾海蓉(1977-),女,副教授,博士
  • 作者简介:郭欣(1990-),女,太原理工大学硕士研究生,E-mail:G_xin189@126.com.
  • 基金资助:

    国家自然科学基金资助项目(61370093);山西省青年科技研究基金资助项目(2013021016-1);山西省自然科学基金资助项目(2013011016-1);校基金团队资助项目(2014TD028,2014TD029)

Speech enhancement using the improved K-SVD algorithm by subspace

GUO Xin;JIA Hairong;WANG Dong   

  1. (College of Information Engineering, Taiyuan Univ. of Technology, Taiyuan 030024, China)
  • Received:2015-08-28 Online:2016-12-20 Published:2017-01-19

摘要:

在低信噪比的情况下,稀疏表示无法将纯净语音完全从带噪语音中分离出来,针对此问题提出了一种利用子空间改进的K奇异值分解语音增强算法.首先,利用子空间最优估计器跟踪噪声; 其次,通过K奇异值分解算法对噪声进行训练,构建出噪声字典; 最后,用K奇异值分解算法训练语音字典.在训练过程中,如果某个原子对应的稀疏系数低于设定的阈值,并且该原子可在训练得到的噪声字典中找到,就把该原子对应的稀疏系数设为零,即可达到去噪的目的.仿真结果表明,改进算法去除白噪声和babble噪声的效果显著,有效提高信噪比和减少语音失真,同时,该算法也可以很好地应用于消除随机噪声.

关键词: 语音增强, K奇异值分解, 稀疏表示, 信号子空间

Abstract:

In the case of a low SNR, it is difficult that the clean speech is separated completely by sparse representation from the noisy speech. To solve the above problem, a speech enhancement method using the improved K-SVD algorithm by subspace is proposed. First, the noise is tracked by the optimal estimator of the subspace, and a noise dictionary is trained by using the K-SVD. Then, the speech dictionary is trained by the K-SVD algorithm. In the process of training, if an atom whose sparse coefficient is lower than the set threshold and could also be found in the noise dictionary, the sparse coefficient is set to zero, which achieves the goal of de-noising. Simulation results show that the algorithm can remove white noise and babble noise obviously, so that the SNR is improved and distortion is reduced greatly. Simultaneously, this improved algorithm can also be applied to eliminate the random noise very well. And the improved algorithm verified by SPSS19.0 software is superior to the K-SVD algorithm and subspace algorithm under a low SNR.

Key words: speech enhancement, K-SVD, sparse representation, subspace