西安电子科技大学学报

• 研究论文 • 上一篇    下一篇

一种稀疏恢复的稳健配准补偿方法

刘洋1;张永顺1;刘汉伟1;郭艺夺1;龙振国2   

  1. (1. 空军工程大学 防空反导学院,陕西 西安 710051;
    2. 空军95100部队,广东 广州 510000)
  • 收稿日期:2016-12-01 出版日期:2017-10-20 发布日期:2017-11-29
  • 作者简介:刘洋(1992-),男,空军工程大学硕士研究生,E-mail: liuyang77118@163.com
  • 基金资助:

    国家自然科学基金资助项目(6150010274)

Robust registration based compensation method based on sparse recovery

LIU Yang1;ZHANG Yongshun1;LIU Hanwei1;GUO Yiduo1;LONG Zhenguo2   

  1. (1.  Air and Missile Defense College, Air Force Engineering Univ., Xi'an 710051, China;
    2. No.95100 Unit of Air Force, Guangzhou 510405, China)
  • Received:2016-12-01 Online:2017-10-20 Published:2017-11-29

摘要:

常规基于配准补偿方法因子孔径损失和先验信息失配问题,导致杂波距离依赖性和补偿性能下降.为解决上述问题,将稀疏恢复算法引入到杂波距离依赖性补偿当中,并对常规基于配准补偿方法中各距离单元回波数据预处理过程加以改进,提出了一种基于稀疏恢复的稳健距离配准补偿方法——SRBC方法.该方法与常规基于配准补偿方法相比,无需子孔径平滑,不依赖于先验知识,直接利用稀疏恢复得到超分辨的杂波空时谱,计算得出过渡协方差矩阵,再通过Capon谱重构出杂波协方差矩阵.经仿真验证, SRBC方法不受先验信息失配影响,不仅能够实现杂波距离依赖性的自适应补偿,在存在阵元误差时的杂波抑制性能同样较为稳定.

关键词: 距离依赖性, 基于配准补偿, 子孔径平滑, 稀疏恢复

Abstract:

The loss of the degree of system freedom and mismatch of prior information based on the registration based compensation (RBC) method will result in a decline in computational performance. In order to solve above problems, a robust method named SRBC is proposed where the sparse recovery method is applied instead of the sub-aperture smoothing operation. First, the SRBC utilizes the sparse recovery to get the super resolution clutter space-time spectrum. Then the transition covariance matrix is calculated. Finally, the clutter covariance matrix is reconstructed by the Capon spectrum. Compared with the traditional RBC method, the SRBC proposed does not depend on sub-aperture smoothing operation and prior information and maintains the performance of clutter range-dependence. In addition, it is also steadier when the sensor error exists. Experimental simulation demonstrates the correctness and feasibility of this method.

Key words: range dependence, registration based compensation, sub-aperture smoothing, sparse recovery