西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (3): 82-88.doi: 10.19665/j.issn1001-2400.2019.03.013

• • 上一篇    下一篇

奇异值分解与中心度量的细粒度车型识别算法

蒋行国,万今朝,蔡晓东,李海鸥,曹艺   

  1. 桂林电子科技大学 信息与通信学院,广西 桂林 541004
  • 收稿日期:2018-08-31 出版日期:2019-06-20 发布日期:2019-06-19
  • 作者简介:蒋行国(1973-),男,副教授,E-mail: tonny_jiang@guet.edu.cn.
  • 基金资助:
    2016年广西科技计划广西重点研发计划桂科(AB16380264);2018年新疆维吾尔自治区重点研发计划(2018B03022-2)

Algorithm for identification of fine-grained vehicles based on singular value decomposition and central metric

JIANG Xingguo,WAN Jinzhao,CAI Xiaodong,LI Haiou,CAO Yi   

  1. School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China
  • Received:2018-08-31 Online:2019-06-20 Published:2019-06-19

摘要:

针对细粒度车型识别图像分类因存在冗余特征而导致识别率低的问题,提出一种基于奇异值分解与中心度量的细粒度车型识别算法。首先,提出一种基于奇异值分解卷积神经网络,对全连接层的权重矩阵进行奇异值分解后重新赋值并微调,可以去除具有相关性的冗余特征,学习到细粒度级别的区分性特征;其次,提出一种学习不同特征的融合损失方法,将中心距离损失和分类损失进行加权融合,使得学习的特征类内之间的距离更小。实验表明,该方法使用 Residual Network(ResNet)框架在Cars-196细粒度车型数据集上测试,准确率能够达到93.02%,优于目前表现较好的双线性和注意力模型。扩展实验证明该方法同样适用于其他网络框架。

关键词: 细粒度车型识别, 冗余特征, 奇异值分解卷积神经网络, 融合损失

Abstract:

To solve the problem of the low recognition rate caused by the redundancy feature on the image classification, an algorithm for identification of fine-grained vehicles based on singular value decomposition and central metric is proposed. First, a convolutional neural network based on singular value decomposition is designed. With the method, the weight matrix of the fully connected layer is decomposed by the singular value, then it is re-assigned and fine-tuned. In this way, the redundant features with correlation can be removed, and the discriminative features of fine-grained levels can be learned. Second, a fusion loss method for different learning features is utilized, in which the losses of the central distance and the classification are fused in a weighted way to shorten the distance between the learned feature classes. Finally, experimental results prove that the test accuracy of the Residual Network (ResNet) framework is up to 93.02% in the Cars-196 fine-grained model data set. The proposed model outperforms the bilinear and attention model. Furthermore, the extended experiments prove that the method is applicable to other network frameworks.

Key words: fine-grained vehicle recognition, redundancy feature, singular value decomposition convolutional neural networks, fusion loss

中图分类号: 

  • TP183