[1] |
LIU X, LIU W, MA H. et al. Large-scale Vehicle Re-identification in Urban Surveillance Videos [C]//Proceedings of the 2016 IEEE International Conference on Multimedia and Expo. Washington: IEEE Computer Society, 2016: 7553002.
|
[2] |
王瑞, 王康晏, 冯玉田 , 等. 复杂场景下声频传感器网络核稀疏表示车辆识别[J]. 西安电子科技大学学报, 2015,42(4):114-120.
|
|
WANG Rui, WANG Kangyan, FENG Yutian , et al. Vehicle Sparse Representation of Audio Sensor Network in Complex Scenes[J]. Journal of Xidian University, 2015,42(4):114-120.
|
[3] |
LIU X, LIU W, MEI T , et al. PROVID: Progressive and Multimodal Vehicle Reidentification for Large-scale Urban Surveillance[J]. IEEE Transactions on Multimedia, 2018,20(3):645-658.
|
[4] |
LIU H, TIAN Y, WANG Y. et al. Deep Relative Distance Learning: Tell the Difference between Similar Vehicles [C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 2167-2175.
|
[5] |
LI Y, LI Y, YAN H. et al. Deep Joint Discriminative Learning for Vehicle Re-identification and Retrieval [C]// Proceedings of the 2018 International Conference on Image Processing. Washington: IEEE Computer Society, 2018: 395-399.
|
[6] |
宋俊芳, 宋翔宇, 郭晓军 , 等. 构建多部件关系概率模型的车辆检测方法[J]. 西安电子科技大学学报, 2017,44(3):89-95.
|
|
SONG Junfang, SONG Xiangyu, GUO Xiaojun , et al. Vehicle Detection Method for Constructing Multi-Part Relationship Probability Model[J]. Journal of Xidian University, 2017,44(3):89-95.
|
[7] |
张密科, 胡选儒 . 基于图像纹理分析的动态车辆识别方法研究[J]. 公路交通科技, 2017,34(10):122-127.
|
|
ZHANG Mike, HU Xuanru . Research on Dynamic Vehicle Identification Method Based on Image Texture Analysis[J]. Journal of Highway and Transportation Research and Development, 2017,34(10):122-127.
|
[8] |
耿庆田, 赵浩宇, 于繁华 , 等. 基于改进HOG特征提取的车型识别算法[J]. 中国光学, 2018,11(2):174-181.
|
|
GENG Qingtian, ZHAO Haoyu, YU Fanhua , et al. Vehicle Identification Algorithm Based on Improved HOG Feature Extraction[J]. China Optics, 2018,11(2):174-181.
|
[9] |
LIU W, ANGUELOV D, ERHAN D. et al. SSD: Single Shot MultiBox Detector [C]//Lecture Notes in Computer Science: 9905. Heidelberg:Springer Verlag, 2016: 21-37.
|
[10] |
REN S Q, HE K M, GIRSHICK R , et al. Faster R-CNN: towards Real-time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
|
[11] |
REDMON J, DIVVALA S, GIRSHICK R. et al. You Only Look Once: Unified, Real-time Object Detection [C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 779-788.
|
[12] |
SIMONYAN K , ZISSERMAN A. Very Deep Convolutional Networks for Large-scale Image Recognition[CP/OL]. [2018-12-10]. https://arxiv.org/pdf/1409.1556.pdf.
|
[13] |
GIRSHICK R. Fast R-CNN [C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448.
|
[14] |
HE K, ZHANG X, REN S. et al. Deep Residual Learning for Image Recognition [C]//Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 770-778.
|
[15] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E . Image Net Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM, 2017,60(6):84-90.
|
[16] |
HADSELL R, CHOPRA S, LECUN Y. Dimensionality Reduction by Learning an Invariant Mapping [C]//Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2006: 1735-1742.
|
[17] |
ZHENG Z D, ZHENG L, YANG Y. A Discriminatively Learned CNN Embedding for Person Re-identification[J/OL]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2016, 14(1) . [2016-11-30].https://www.researchgate.net/publication/310462231.DOI: 14.10.1145/3159171.
|