西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (5): 142-147.doi: 10.19665/j.issn1001-2400.2019.05.020

• • 上一篇    下一篇

多特征融合的相关滤波红外单目标跟踪算法

宋建锋1,苗启广1(),申猛1,权义宁1,陈毓生2   

  1. 1. 西安电子科技大学 计算机科学与技术学院,陕西 西安 710071
    2. 中国人民解放军96963部队 北京 100000
  • 收稿日期:2019-06-05 出版日期:2019-10-20 发布日期:2019-10-30
  • 通讯作者: 苗启广
  • 作者简介:宋建锋(1978—),男,讲师,E-mail:jfsong@mail.xidian.edu.cn.
  • 基金资助:
    国家重点研发计划(*238*);国家重点研发计划(2018YFC0807500);国家自然科学基金(61772396);国家自然科学基金(61472302);国家自然科学基金(61772392);西安市大数据与视觉智能关键技术重点实验室课题(201805053ZD4CG37);中央高校基本科研业务费专项资金(JB170304);中央高校基本科研业务费专项资金(JBF180301)

Algorithm for tracking an infrared single target based on correlation filtering with multi-feature fusion

SONG Jianfeng1,MIAO Qiguang1(),SHEN Meng1,QUAN Yining1,CHEN Yusheng2   

  1. 1. School of Computer Science and Technology, Xidian University, Xi’an 710071, China
    2. PLA Unit 96963, Beijing 100000, China
  • Received:2019-06-05 Online:2019-10-20 Published:2019-10-30
  • Contact: Qiguang MIAO

摘要:

针对红外单目标跟踪问题,提出一种多特征的相关滤波目标跟踪算法。该算法融合了图像的卷积特征和差分特征,使用卷积特征和差分特征分别训练相关滤波模型。在跟踪阶段,对两种特征的相关滤波模型得到的响应图动态融合,利用动态融合的响应图来确定目标的最终位置,使用得到的目标位置分别更新相关滤波模型。在林雪平热红外数据集上进行了实验验证,与一些经典的跟踪算法进行了对比,表明该算法拥有更高的跟踪准确率。

关键词: 红外目标跟踪, 多特征, 卷积网络, 相关滤波

Abstract:

iAimng at the problem of infrared single target tracking, a tracking algorithm based on Multi-feature and correlation filtering is proposed. The algorithm fuses convolution features and differential features. The convolution feature and differential feature are used to train the correlation filtering model, respectively. In the tracking stage, the response graphs obtained from the correlation filtering model of the two features are fused dynamically. The final position of the target is determined by the dynamic fusion response graph, and then the correlation filtering model is updated separately by using the obtained target position. Experiments on the Link?ping Thermal InfraRed dataset show that the proposed tracking algorithm has a higher tracking accuracy than the conventional tracking algorithms.

Key words: infrared target tracking, multiple features, convolutional networks, correlation filtering

中图分类号: 

  • TP37