西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (6): 30-36.doi: 10.19665/j.issn1001-2400.2019.06.005

• • 上一篇    下一篇

采用注意力门控卷积网络模型的目标情感分析

曹卫东,李嘉琪(),王怀超   

  1. 中国民航大学 计算机科学与技术学院, 天津 300300
  • 收稿日期:2019-06-24 出版日期:2019-12-20 发布日期:2019-12-21
  • 通讯作者: 李嘉琪
  • 作者简介:曹卫东(1964—),女,副教授,博士,E-mail:2471891478@qq.com
  • 基金资助:
    民航科技创新重大专项(MHRD20160109);民航安全能力项目(TRSA201803)

Analysis of targeted sentiment by the attention gated convolutional network model

CAO Weidong,LI Jiaqi(),WANG Huaichao   

  1. School of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China
  • Received:2019-06-24 Online:2019-12-20 Published:2019-12-21
  • Contact: Jiaqi LI

摘要:

针对传统目标情感分析采用循环神经网络模型导致训练时间长且其他替代模型未能使得上下文和目标词之间实现良好交互等问题,提出了一种用于目标情感分析的注意力门控卷积网络模型。该模型首先将上下文和目标词通过多头注意力机制加强上下文和目标词之间的交互;其次采用门控卷积机制进一步提取关于目标词的情感特征;最后通过Softmax分类器将情感特征进行分类,输出情感极性。实验结果显示,与循环神经网络模型中准确率最高的循环注意力网络模型相比,在SemEval 2014任务四的餐厅和笔记本电脑数据集上的准确率分别提高了1.29%和0.12%;与循环神经网络模型中收敛速度较快的基于注意力的长短期记忆网络模型相比,收敛时间下降了约29.17s。

关键词: 情感分析, 循环神经网络, 多头注意力机制, 门控卷积机制

Abstract:

The recurrent neural networks are used for traditional targeted sentiment analysis and usually lead to a long training time. And other alternative models are unable to make a good interaction between context and target words. An attention gated convolutional network model for targeted sentiment analysis is proposed. First, context and target words are processed by the multiple attention mechanism to enhance their interactions. Second, the gated convolution mechanism is used to selectively generate emotional features. Finally, the emotional features are classified by the Softmax classifier to output the emotional polarity. Experimental results show that compared with the Recurrent Attention Network model, which has the highest accuracy rate in the recurrent neural network models, the proposed model improves the accuracy rate by 1.29% and 0.12% respectively on the Restaurant and Laptop datasets of SemEval 2014 Task4. Compared with the Attention-based Long Short-Term Memory Network model, which has a faster convergence rate in the recurrent neural network model, the convergence time is reduced by 29.17 s.

Key words: sentiment analysis, recurrent neural networks, multiple attention mechanism, gated convolution mechanism

中图分类号: 

  • TP391