[1] |
RANZATO M, KRIZHEVSKY A, HINTON G E , et al. Factored 3-way Restricted Boltzmann Machines for Modeling Natural Images[J]. Journal of Machine Learning Research, 2010,9:621-628.
|
[2] |
VINCENT P, LAROCHELLE H, BENGIO Y , et al. Extracting and Composing Robust Features with Denoising Autoencoders[C]//Proceedings of the 2008 25th International Conference on Machine Learning. New York: ACM, 2008: 1096-1103.
|
[3] |
KINGMA D P, WELLING M . Auto-Encoding Variational Bayes[C]//Proceedings of the 2014 2nd International Conference on Learning Representations. San Diego: ICLR, 2014: 149797.
|
[4] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M , et al. Generative Adversarial Nets[C]//Advances in Neural Information Processing Systems. Vancouver: Neural Information Processing Systems Foundation, 2014: 2672-2680.
|
[5] |
RATLIFF L J, BURDEN S A, SASTRY S S , et al. Characterization and Computation of Local Nash Equilibria in Continuous Games[C]//Proceedings of the 2013 51st Annual Allerton Conference on Communication, Control, and Computing. Washington: IEEE Computer Society, 2013: 917-924.
|
[6] |
BROCK A, DONAHUE J, SIMONYAN K , et al. Large Scale GAN Training for High Fidelity Natural Image Synconfproc[C]//Proceedings of the 2019 7th International Conference on Learning Representation. San Diego: ICLR, 2019: 149936.
|
[7] |
WANG Q, FAN H J, SUN G , et al. Laplacian Pyramid Adversarial Network for Face Completion[J]. Pattern Recognition, 2019,88:493-505.
doi: 10.1016/j.patcog.2018.11.020
|
[8] |
LEE H Y, TSENG H Y, HUANG J B , et al. Diverse Image-to-image Translation via Disentangled Representations[C]//Lecture Notes in Computer Science: 11205. Heidelberg: Springer Verlag, 2018: 36-52.
|
[9] |
ZHU J Y, PARK T, ISOLA P , et al. Unpaired Image-to-image Translation using Cycle-consistent Adversarial Networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2242-2251.
|
[10] |
LIU Z, CHAI X, CHEN X , et al. Deep Memory and Prediction Neural Network for Video Prediction[J]. Neurocomputing, 2019,331:235-241.
doi: 10.1371/journal.pone.0225317
pmid: 31725778
|
[11] |
CHEN X Y, XU C, YANG X K , et al. Gated-GAN: Adversarial Gated Networks for Multi-collection Style Transfer[J]. IEEE Transactions on Image Processing, 2019,28(2):546-560.
doi: 10.1109/TIP.2018.2869695
pmid: 30222565
|
[12] |
LI Y H, ZHANG T Y, HAN X , et al. Image Style Transfer in Deep Learning Networks[C]//Proceedings of the 2018 5th International Conference on Systems and Informatics. Piscataway: IEEE, 2019: 8599501.
|
[13] |
VU T, LUU T M, YOO C D , et al. Perception-enhanced Image Super-resolution via Relativistic Generative Adversarial Networks[C]//Lecture Notes in Computer Science: 11133. Heidelberg: Springer Verlag, 2019: 98-113.
|
[14] |
ZHANG H, XU T, LI H S , et al. StackGAN: Text to Photo-realistic Image Synconfproc with Stacked Generative Adversarial Networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5908-5916.
|
[15] |
ZHANG H, XU T, LI H S , et al. StackGAN++: Realistic Image Synjournal with Stacked Generative Adversarial Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019,41(8):1947-1962.
doi: 10.1109/TPAMI.2018.2856256
pmid: 30010548
|
[16] |
MEHRALIAN M, KARASFI B . RDCGAN: Unsupervised Representation Learning with Regularized Deep Convolutional Generative Adversarial Networks[C]//Proceedings of the 2018 9th Conference on Artificial Intelligence and Robotics and 2nd Asia-Pacific International Symposium. Piscataway: IEEE, 2018: 31-38.
|
[17] |
QUAN T M, NGUYEN-DUC T, JEONG W K . Compressed Sensing MRI Reconstruction Using a Generative Adversarial Network with a Cyclic Loss[J]. IEEE Transactions on Medical Imaging, 2018,37(6):1488-1497.
doi: 10.1109/TMI.2018.2820120
pmid: 29870376
|
[18] |
ARJOVSKY M, CHINTALA S, BOTTOU L . Wasserstein GAN[J/OL]. [2019-05-20]. https://arxiv.org/abs/1701.07875.
|
[19] |
GULRAJANI I, AHMED F, ARJOVSKY M , et al. Improved Training of Wasserstein GAN[C]//Advances in Neural Information Processing Systems. Vancouver: Neural Information Processing System Foundation, 2017: 5768-5778.
|
[20] |
MAO X, LI Q, XIE H , et al. Least Squares Generative Adversarial Networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2813-2821.
|
[21] |
ZHAO J B, MATHIEU M, LECUN Y . Energy-based Generative Adversarial Network[C]//Proceedings of the 2017 5th International Conference on Learning Representations. San Diego: ICLR, 2017: 149804.
|
[22] |
BERTHELOT D, SCHUMM T, METZ L . BEGAN: Boundary Equilibrium Generative Adversarial Networks[J/OL]. [2019-05-20]. https://arxiv.org/abs/1703.10717
|
[23] |
LI Y, XIAO N, OUYANG W . Improved Boundary Equilibrium Generative Adversarial Networks[J]. IEEE Access, 2018,6:11342-11348.
doi: 10.1109/ACCESS.2018.2804278
|
[24] |
ZHANG H, GOODFELLOW I, METAXAS D , et al. Self-Attention Generative Adversarial Networks[J/OL]. [2019-05-20]. https://arxiv.org/abs/1805.08318.
|
[25] |
MIRZA M, OSINDERO S . Conditional Generative Adversarial Nets[J]. [J/OL]. [2019-05-20]. https://arxiv.org/abs/1411.1784.
|
[26] |
LIU Z, LUO P, WANG X , et al. Deep Learning Face Attributes in the Wild[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 3730-3738.
|
[27] |
LECUN Y, CORTES C, BURGES C J C , The MNIST Database of Handwritten Digits[DB/OL].[2019-05-12]. http://yann.lecun.com/exdb/mnist/.
|
[28] |
陈晓范, 申海杰, 边倩 , 等. 结合注意力机制的人脸超分辨率重建[J]. 西安电子科技大学学报, 2019,44(3):148-153.
|
|
CHEN Xiaofan, SHEN Haijie, BIAN Qian , et al. Face Image Super-resolution with an Attention Mechanism[J]. Journal of Xidian University, 2019,44(3):148-153.
|