西安电子科技大学学报 ›› 2020, Vol. 47 ›› Issue (1): 10-17.doi: 10.19665/j.issn1001-2400.2020.01.002

• • 上一篇    下一篇

结合社会特征和注意力的行人轨迹预测模型

张志远,刁英华()   

  1. 中国民航大学 计算机科学与技术学院,天津 300300
  • 收稿日期:2019-08-08 出版日期:2020-02-20 发布日期:2020-03-19
  • 通讯作者: 刁英华
  • 作者简介:张志远(1978—),男,教授,E-mail:13920974287@163.com.
  • 基金资助:
    国家自然科学基金民航联合基金(U1633110)

Pedestrian trajectory prediction model with social features and attention

ZHANG Zhiyuan,DIAO Yinghua()   

  1. School of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China
  • Received:2019-08-08 Online:2020-02-20 Published:2020-03-19
  • Contact: Yinghua DIAO

摘要:

针对社会生成对抗网络行人交互特征简单且无法充分利用行人交互信息的问题,提出一种结合社会特征和注意力机制的行人轨迹预测模型。采用生成对抗网络模型,其中生成器使用编码器-解码器结构,中间加入注意力模块,并且设置3种社会特征以丰富行人交互信息。辅助注意力模块对同一场景中的行人进行影响力分配,使网络可以充分利用行人交互信息,提升模型的准确性。多个数据集上的实验结果表明,该模型较之前基于池化模块行人轨迹预测模型的准确率平均提高15%,且在行人密集、非直线轨迹多的场景中准确率提升34%,效果更加明显。

关键词: 轨迹生成, 生成对抗网络, 注意力机制, 长短时记忆网络, 行人交互

Abstract:

To address the problems that the pedestrian interaction feature of the Social GAN is simple and that it cannot make full use of the most of pedestrian interaction information, this paper proposes a pedestrian trajectory prediction model with social features and attention mechanism. This model adapts the structure of generative adversarial networks. The generator adapts an encoder-decoder model and the attention model is put between encoder and decoder. Three social features are set to enrich pedestrian interaction information which assists the attention module to make full use of the most of pedestrian interaction information by allocating the influence of pedestrians in the scene, so that the accuracy of the model is improved. Experimental results on multiple datasets show that the accuracy of this model in the pedestrian trajectory prediction task is increased by 15% compared with the previous pedestrian trajectory prediction model based on the pooling module. The improvement effect is most obvious in scenes with dense pedestrians and lots of non-straight tracks, with the accuracy increased by 34%.

Key words: trajectory generation, generative adversarial networks, attention mechanism, long short-term memory, pedestrian interaction

中图分类号: 

  • TP391