西安电子科技大学学报 ›› 2020, Vol. 47 ›› Issue (1): 88-94.doi: 10.19665/j.issn1001-2400.2020.01.013

• • 上一篇    下一篇

碳纳米管的无电沉积方法掺镍及电接触特性

董帅1,常春蕊2(),梁志奇1,张志明3,安立宝1()   

  1. 1. 华北理工大学 机械工程学院, 河北 唐山 063210
    2. 华北理工大学 理学院,河北 唐山 063210
    3. 华北理工大学 材料科学与工程学院,河北 唐山 063210
  • 收稿日期:2019-09-13 出版日期:2020-02-20 发布日期:2020-03-19
  • 通讯作者: 常春蕊,安立宝
  • 作者简介:董 帅(1994—),女,华北理工大学硕士研究生,E-mail:1449954702@qq.com
  • 基金资助:
    国家自然科学基金(51472074);河北省百人计划(E2012100005)

Electroless deposition of carbon nanotubes doped with nickel and its electrical contact characteristics

DONG Shuai1,CHANG Chunrui2(),LIANG Zhiqi1,ZHANG Zhiming3,AN Libao1()   

  1. 1. College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, China
    2. College of Sciences, North China University of Science and Technology, Tangshan 063210, China
    3. College of Material Science and Engineering, North China University of Science and Technology, Tangshan 063210, China
  • Received:2019-09-13 Online:2020-02-20 Published:2020-03-19
  • Contact: Chunrui CHANG,Libao AN

摘要:

采用一种简便、低成本的无电沉积技术,制备了不同掺杂情况的掺镍碳纳米管,并探究了不同掺镍样品的电接触特性。首先,对原样碳纳米管进行混酸氧化、敏化和活化处理;然后,以六水合氯化镍为主盐,二甲胺硼烷为还原剂,配制无电沉积液,再将配制好的碳纳米管分散液逐滴滴入无电沉积液中,经搅拌沉积获得掺镍碳纳米管样品。形貌表征结果表明,通过改变沉积条件可调控掺入碳纳米管管壁纳米粒子的粒径及掺杂量;X射线能谱分析表明,所掺入纳米粒子的主要成分为镍,进一步的X射线光电子能谱揭示了镍的组成价态;拉曼光谱表明,此种沉积方法对碳纳米管掺镍的掺杂类型为P型。电接触性能测试结果表明,不同粒径及掺杂量的掺镍碳纳米管与金电极间的电接触性能不同,但均可得到一定程度的改善。按掺镍样品中所掺入颗粒粒径小且量适中、粒径中等且量适中、粒径大且量多的顺序,其接触电阻平均降幅分别约为32.70%、71.63%及49.33%。

关键词: 碳纳米管, 无电沉积, 掺杂, 镍纳米粒子, 接触电阻

Abstract:

A simple and low-cost electroless deposition technique is used to prepare nickel-doped carbon nanotubes under different doping conditions, and to explore the influence of different nickel doped samples on the electrical contact properties of carbon nanotubes. First, the original carbon nanotubes are subjected to mixed acid oxidation, sensitization and activation treatment. Subsequently, the nickel chloride hexahydrate is used as the main salt and dimethylamine borane is used as the reducing agent to prepare the electroless deposition solution. And then, the prepared carbon nanotube dispersion is dropped into the electroless deposition solution to obtain the sample of nickel-doped carbon nanotubes. Morphological characterization indicates that the nanoparticles with different particle sizes and doping amounts could be doped on the surface of carbon nanotubes under different deposition conditions. The X-ray energy spectrum shows that the main component of the doped nanoparticles is nickel, and the further X-ray photoelectron spectroscopy reveals the constituent valence state of nickel. However, the Raman spectra indicate that the doping type of nickel-doped carbon nanotubes by this deposition method is the P-type. Finally, the electrical contact performance test results show that the electrical contact properties between gold electrodes and nickel-doped carbon nanotubes with different particle sizes and doping contents are different, but that all of them can be improved to a certain extent. According to the order of nanoparticles with a small particle size and a moderate amount, those with a moderate particle size and a moderate amount, and those with a large particle size and a large amount in the nickel-doped sample, the average value of the contact resistance decreases by 32.70%, 71.63% and 49.33%, respectively.

Key words: carbon nanotubes, electroless deposition, doping, nickel nanoparticles, contact resistance

中图分类号: 

  • TN305.3