西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (3): 40-48.doi: 10.19665/j.issn1001-2400.2021.03.005

• 车联网技术与进展专题 • 上一篇    下一篇

一种面向智慧交通的车联网网络流量估计方法

凌敏1,2(),罗影3(),袁亮4(),靳传学5()   

  1. 1.成都航空职业技术学院 机电工程学院,四川 成都 610100
    2.电子科技大学 信息与通信工程学院,四川 成都 611731
    3.成都航空职业技术学院 信息中心,四川 成都 610100
    4.成都盘沣科技有限公司,四川 成都 610100
    5.电子科技大学 通信抗干扰技术国家级重点实验室,四川 成都611731
  • 收稿日期:2020-10-19 出版日期:2021-06-20 发布日期:2021-07-05
  • 作者简介:凌 敏(1977—),女,讲师,硕士,E-mail:qiaotaoli@126.com|罗 影(1986—),女,硕士,E-mail:luoying199812@163.com|袁 亮(1982—),男,工程师,E-mail:yuanliang20203211@sina.com|靳传学(1976—),男,副研究员,E-mail:jinchuanxue1976221@sina.com
  • 基金资助:
    国家自然科学基金(61673189);国家自然科学基金(71671020)

Method for estimation of vehicular network traffic for smart transportations

LING Min1,2(),LUO Ying3(),YUAN Liang4(),JIN Chuanxue5()   

  1. 1. Department of Aviation Manufacturing Engineering,Chengdu Aeronautic Polytechnic,Chengdu 610100,China
    2. School of Information and Communication Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China
    3. Information Center,Chengdu Aeronautic Polytechnic,Chengdu 610100,China
    4. Chengdu Panfeng Technology LTD,Co.,Chengdu 610100,China
    5. National Key Laboratory of Scinece and Technology on Communications,University of Electronic Science and Technology of China,Chengdu 611731,China
  • Received:2020-10-19 Online:2021-06-20 Published:2021-07-05

摘要:

随着5G网络的快速部署,车联网、物联网、边缘计算等迅速发展,车联网络流量测量面对诸多挑战。研究了面向智慧城市的车联网流量估计问题,提出了一种基于软件定义网络的车联网流量估计方法。基于软件定义网络架构获得粗粒度的车联网络流量测量值,构建了基于自回归移动平均模型的细粒度测量模型,并提出一种启发式算法来获得精确的流量估计结果。仿真结果表明,所提的方法能够在细粒度的网络流量模型下提升流量的测量精度。

关键词: 智慧城市, 车联网, 边缘计算, 软件定义网络, 网络测量

Abstract:

With the rapid deployment of 5G networks,the Internet of Vehicles (IoV),Internet of Things (IoT),and edge computing have made a great progress,which leads to vehicular network traffic measurements facing many challenges.To this end,the present paper studies the vehicular network traffic estimation problem for smart cities.A software-defined network (SDN)-based vehicular network traffic estimation method is proposed.A coarse-grained measurement value via an SDN architecture is designed.A fine-grained measurement model based on the autoregressive moving average (ARMA) model is constructed.Finally,a heuristic algorithm is presented to obtain accurate estimation results for vehicular network traffic.Simulation results indicate that the method proposed in this paper is feasible and effective.

Key words: smart city, internet of vehicles, edge computing, software-defined networking, network measurement

中图分类号: 

  • TP393