西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (4): 128-135.doi: 10.19665/j.issn1001-2400.2021.04.017

• 计算机科学与技术&网络空间安全 • 上一篇    下一篇

博弈方法下的图像去噪与边界提取

乔鱼(),冯象初()   

  1. 西安电子科技大学 数学与统计学院,陕西 西安 710071
  • 收稿日期:2020-04-19 出版日期:2021-08-30 发布日期:2021-08-31
  • 通讯作者: 冯象初
  • 作者简介:乔 鱼(1995—),女,西安电子科技大学硕士研究生,E-mail: yuliyapisces@163.com
  • 基金资助:
    国家自然科学基金(61772389);国家自然科学基金(61472303)

Image denoising and boundary extraction based on game theory

QIAO Yu(),FENG Xiangchu()   

  1. School of Mathematics and Statistics,Xidian University,Xi’an 710071,China
  • Received:2020-04-19 Online:2021-08-30 Published:2021-08-31
  • Contact: Xiangchu FENG

摘要:

由于半二次正则化模型得到的边界过于模糊,去噪效果也不够理想,因此使用博弈的方法对半二次正则化模型加以改进,对图像同时进行去噪和边界提取。定义了两个参与者,采用经典的半二次正则化方法作为去噪的目标函数,选取比较新颖的全局稀疏梯度模型作为边界提取的目标函数。图像去噪与边界提取这两个参与者在一个博弈过程中交替迭代,将其收敛点作为纳什均衡点。实验结果说明,所提算法能够有效地改进半二次正则化模型,从而得到更好的去噪与边界提取效果。将提出的模型用于各种类别的图像,无论从数值结果还是视觉效果上,所提算法都得到了较好的结果。

关键词: 图像去噪, 边界提取, 半二次正则化, 全局稀疏梯度, 纳什均衡点

Abstract:

Half-quadratic regularization is a classical image denoising method.In removing image noise,the image boundary can be obtained.Since the boundary obtained by the half-quadratic regularization model is too fuzzy and the denoising effect is not ideal,the half-quadratic regularization model is improved by the game method,the image is denoised and the boundary is extracted simultaneously.Two participants are defined,with the classical half-quadratic regularization method used as the target function of denoising,and a relatively novel global sparse gradient model selected as the target function of boundary extraction.The two participants,image denoising and boundary extraction,iterate alternately in a game process,with their convergence points as the Nash equilibrium points.The proposed model is applied to various types of images,and the algorithm proposed can lead to good results in both numerical results and visual effects.Experimental results show that the proposed algorithm can effectively improve the half-quadratic regularization model,thus obtaining better denoising and boundary extraction effects.

Key words: image denoising, boundary extraction, half-quadratic regularization, global sparse gradient, nash equilibrium point

中图分类号: 

  • TP391