西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (4): 128-135.doi: 10.19665/j.issn1001-2400.2021.04.017
收稿日期:
2020-04-19
出版日期:
2021-08-30
发布日期:
2021-08-31
通讯作者:
冯象初
作者简介:
乔 鱼(1995—),女,西安电子科技大学硕士研究生,E-mail: 基金资助:
Received:
2020-04-19
Online:
2021-08-30
Published:
2021-08-31
Contact:
Xiangchu FENG
摘要:
由于半二次正则化模型得到的边界过于模糊,去噪效果也不够理想,因此使用博弈的方法对半二次正则化模型加以改进,对图像同时进行去噪和边界提取。定义了两个参与者,采用经典的半二次正则化方法作为去噪的目标函数,选取比较新颖的全局稀疏梯度模型作为边界提取的目标函数。图像去噪与边界提取这两个参与者在一个博弈过程中交替迭代,将其收敛点作为纳什均衡点。实验结果说明,所提算法能够有效地改进半二次正则化模型,从而得到更好的去噪与边界提取效果。将提出的模型用于各种类别的图像,无论从数值结果还是视觉效果上,所提算法都得到了较好的结果。
中图分类号:
乔鱼,冯象初. 博弈方法下的图像去噪与边界提取[J]. 西安电子科技大学学报, 2021, 48(4): 128-135.
QIAO Yu,FENG Xiangchu. Image denoising and boundary extraction based on game theory[J]. Journal of Xidian University, 2021, 48(4): 128-135.
表1
图像去噪结果峰值信噪比比较dB"
算法 | house | mon | brain | lena | couple | man | hill | camera |
---|---|---|---|---|---|---|---|---|
GRHQ | 31.04 | 29.56 | 35.15 | 30.82 | 27.62 | 28.83 | 28.79 | 27.10 |
GMHQ | 27.08 | 26.10 | 28.63 | 26.02 | 24.46 | 25.30 | 25.04 | 26.38 |
HLHQ | 30.41 | 29.76 | 32.75 | 29.71 | 27.61 | 28.33 | 28.20 | 28.28 |
HSHQ | 31.05 | 29.56 | 35.19 | 30.86 | 27.67 | 28.88 | 28.84 | 27.12 |
PM | 27.93 | 27.89 | 34.26 | 28.43 | 25.57 | 26.77 | 27.25 | 24.78 |
NLM | 28.56 | 28.06 | 29.60 | 28.43 | 27.26 | 27.52 | 27.56 | 27.20 |
SGNLM | 31.49 | 30.91 | 33.17 | 30.26 | 26.92 | 27.80 | 27.68 | 28.33 |
GSGTD | 31.08 | 28.36 | 35.40 | 31.08 | 28.79 | 29.47 | 29.49 | 27.54 |
HQGSG | 31.55 | 30.25 | 35.41 | 31.45 | 28.58 | 29.58 | 29.50 | 28.31 |
表2
图像去噪结果结构相似性值比较"
算法 | house | mon | brain | lena | couple | man | hill | camera |
---|---|---|---|---|---|---|---|---|
GRHQ | 0.766 | 0.875 | 0.889 | 0.894 | 0.847 | 0.863 | 0.848 | 0.848 |
GMHQ | 0.698 | 0.763 | 0.698 | 0.752 | 0.680 | 0.706 | 0.653 | 0.719 |
HLHQ | 0.754 | 0.839 | 0.856 | 0.877 | 0.845 | 0.854 | 0.833 | 0.772 |
HSHQ | 0.765 | 0.873 | 0.890 | 0.895 | 0.850 | 0.868 | 0.851 | 0.760 |
PM | 0.692 | 0.823 | 0.871 | 0.855 | 0.798 | 0.823 | 0.815 | 0.684 |
NLM | 0.550 | 0.609 | 0.795 | 0.845 | 0.873 | 0.866 | 0.863 | 0.570 |
SGNLM | 0.840 | 0.906 | 0.866 | 0.822 | 0.706 | 0.731 | 0.681 | 0.814 |
GSGTD | 0.813 | 0.798 | 0.879 | 0.818 | 0.775 | 0.784 | 0.760 | 0.724 |
HQGSG | 0.771 | 0.873 | 0.898 | 0.902 | 0.878 | 0.889 | 0.876 | 0.780 |
[1] |
COHEN M C, HARSHA P. Designing Price Incentives in a Network with Social Interactions[J]. Manufacturing and Service Operations Management, 2020, 22(2):292-309.
doi: 10.1287/msom.2018.0738 |
[2] | YANG Y, LIU L. Strategic Uncertainty,Coordination Failure and Emergence:A Game Theory Study on Agency Structure Interactions[J]. Journal for the Theory of SocialBehaviour, 2019, 49:402-420. |
[3] | SHAO J, ZHAO Y, LIU X. Optimization of Test Resources for 3D SoC Based on Game Theory[J]. The Journal of China Universities of Posts and Telecommunications, 2019, 26(1):65-74. |
[4] |
SUMESH S, KRISHNA A, SUBRAMANIAN C. Game Theory Based Reasoning of Opposing Non functional Requirements using Interactor Dependencies[J]. Computer Journal, 2019, 62(11):1557-1583.
doi: 10.1093/comjnl/bxy143 |
[5] |
DANIELYAN A, KATKOVNIK V, EGIAZARIAN K. BM3D Frames and Variational Image Deblurring[J]. IEEE Transactions on Image Processing, 2012, 21(4):1715-1728.
doi: 10.1109/TIP.2011.2176954 |
[6] |
CHEN Y, WANG B, LIN W S, et al. Cooperative Peer-to-Peer Streaming:An Evolutionary Game Theoretic Approach[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(10):1346-1357.
doi: 10.1109/TCSVT.2010.2077490 |
[7] |
KALLEL M, ABOULAICH R, HABBAL A, et al. A Nash Game Approach to Joint Image Restoration and Segmentation[J]. Applied Mathematical Modelling, 2014, 38(11-12):3038-3053.
doi: 10.1016/j.apm.2013.11.034 |
[8] |
JIN C, LI Q, JIN S. An Adaptive VPDE Image Denoising Model Based on Structure Tensor[J]. Multimedia Tools and Applications, 2019, 78(19):28331-28354.
doi: 10.1007/s11042-019-07912-7 |
[9] |
SERGIO A, SONIA B, JUAN R, et al. On Some New Variational Problems for Image Denoising[J]. Mathematical Methods in the Applied Sciences, 2019, 42(17):5881-5897.
doi: 10.1002/mma.v42.17 |
[10] | PANG Z, ZHANG H, SHI B. Image Denoising Model Based on l p Directional Total Variation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3):464. |
[11] |
MOHAMMED N. A Wavelet-based Method for MRI Liver Image Denoising[J]. Biomedizinische Technik/Biomedical Engineering, 2019, 64(6):699-709.
doi: 10.1515/bmt-2018-0033 |
[12] |
LI S Y, CHEN Y W, JIANG R X, et al. Image Denoising Via Multi-Scale Gated Fusion Network[J]. IEEE Access, 2019, 7:49392-49402.
doi: 10.1109/Access.6287639 |
[13] |
ZHANG K, ZUO W, ZHANG L. FFDNet:Toward A Fast and Flexible Solution for CNN Based Image Denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9):4608-4622.
doi: 10.1109/TIP.2018.2839891 |
[14] | ZHONG Y, LIU L, ZHAO D, et al. A Generative Adversarial Network for Image Denoising[J]. Multimedia Tools and Applications, 2019(2):1-13. |
[15] |
PERONA P, MALIK J. Scale-Space and Edge Detection Using Anisotropic Diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7):629-639.
doi: 10.1109/34.56205 |
[16] |
RUDIN L, OSHER S, FATEMI E. Nonlinear Total Variation Based Noise Removal Algorithms[J]. Physica D, 1992, 60(1-4):259-268.
doi: 10.1016/0167-2789(92)90242-F |
[17] | BUADES A, COLL B, MOREL J M. A Non-local Algorithm for Image Denoising[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2005, 2:60-65. |
[18] | 张瑞, 冯象初, 王斯琪, 等. 基于稀疏梯度场的非局部图像去噪算法[J]. 自动化学报, 2015, 41(9):1542-1552. |
ZHANG Rui, FENG Xiangchu, WANG Siqi, et al. A Sparse Gradients Field Based Image Denoising Algorithm Via Non-local Means[J]. Acta Automatica Sinica, 2015, 41(9):1542-1552. | |
[19] |
GEMAN D, REYNOLDS G. Constrained Restoration and the Recovery of Discontinuities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(3):367-383.
doi: 10.1109/34.120331 |
[20] |
GREEN P J. Bayesian Reconstructions from Emission Tomography Data Using A Modified EM Algorithm[J]. IEEE Transactions on Medical Imaging, 1990, 9(1):84-93.
doi: 10.1109/42.52985 |
[21] |
CHARBONNIER P, BLANC F L, AUBERT G, et al. Deterministic Edge-preserving Regularization in Computed Imaging[J]. IEEE Transactions on Image Process, 1997, 6(2):298-311.
doi: 10.1109/TIP.83 |
[22] |
COHEN L D. Auxiliary Variables and Two-step Iterative Algorithms in Computer Vision Problems[J]. Journal of Mathematical Imaging and Vision, 1996, 6(1):59-83.
doi: 10.1007/BF00127375 |
[23] |
HEBERT T, LEAHY R. A Generalized EM Algorithm for 3-D Bayesian Reconstruction from Poisson Data Using Gibbs Priors[J]. IEEE Transactions on Medical Imaging, 1989, 8(2):194-202.
doi: 10.1109/42.24868 |
[24] |
LEITERITZ R. Capital Account Liberalization in Latin America:The Half-Life of a Powerful Economic Idea[J]. Optics and Spectroscopy, 2005, 98(3):336-340.
doi: 10.1134/1.1890509 |
[25] | LI L H, PAN J S, LAI W S, et al. Learning A Discriminative Prior for Blind Image Deblurring[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:6616-6625. |
[26] | ZHAO Y B, ZHANG D M, WU Y F, et al. Supervised Descent Method for Weld Pool Boundary Extraction During Fiber Laser Welding Process[J]. China Welding, 2019, 1:6-10. |
[27] | ZHANG Z Y, CAO Y F, ZHONG P Y, et al. An Edge-Boxes-Based Intruder Detection Algorithm for UAV Sense and Avoid System[J]. Transactions of Nanjing University of Aeronautics and Astronautics. 2019, 36(2):253-263. |
[28] | 李楠. SAR图像多目标边缘检测性能对比研究[J]. 舰船电子工程, 2019, 39(8):124-147. |
LI Nan. Comparative Study on the Performance of Multi-target Edge Detection in SAR Images[J]. Ship Electronic Engineering, 2019, 39(8):124-147. | |
[29] |
ZHANG R, FENG X C, YANG L X, et al. Global Sparse Gradient Guided Variational Retinex Model for Image Enhancement[J]. Signal Processing:Image Communication, 2017, 58:270-281.
doi: 10.1016/j.image.2017.08.008 |
[30] | 张瑞, 冯象初, 杨丽霞, 等. 全局稀疏梯度耦合张量扩散的图像去噪模型[J]. 西安电子科技大学学报, 2017, 44(6):150-155. |
ZHANG Rui, FENG Xiangchu, YANG Lixia, et al. Image Denoising Model Based on Global Sparse Gradient Coupled Tensor Diffusion[J]. Journal of Xidian University, 2017, 44(6):150-155. | |
[31] |
COMBETTES P L, WAJS V R. Signal Recovery by Proximal Forward-Backward Splitting[J]. Multiscale Modeling and Simulation, 2005, 4(4):1168-1200.
doi: 10.1137/050626090 |
[1] | 赖睿,官俊涛,徐昆然,熊皑,杨银堂. 级联残差学习的红外图像非均匀性校正方法[J]. 西安电子科技大学学报, 2019, 46(1): 14-19. |
[2] | 张瑞;冯象初;杨丽霞;常莉红. 全局稀疏梯度耦合张量扩散的图像去噪模型[J]. 西安电子科技大学学报, 2017, 44(6): 150-155. |
[3] | 冯象初;李晓晖;王卫卫;贾西西. 方向扩散方程修正BM3D图像去噪改进算法[J]. 西安电子科技大学学报, 2017, 44(5): 102-108. |
[4] | 霍雷刚;冯象初;王旭东;霍春雷. 高阶SVD和全变差正则的乘性噪声去除模型[J]. 西安电子科技大学学报, 2016, 43(3): 78-84. |
[5] | 高博;王俊;原慧. 一种参数自适应的SAR图像去噪方法[J]. J4, 2015, 42(5): 63-67. |
[6] | 马洪晋;聂玉峰. 一种图像特征增强的各向异性扩散去噪方法[J]. J4, 2015, 42(5): 154-160. |
[7] | 崔华;严玍伻. 融合卡方累积分布函数和PDE的曲波阈值去噪法[J]. J4, 2014, 41(4): 108-110+172. |
[8] | 王旭东;冯象初;张选德. 去除乘性噪声的迭代重加权二阶正则模型[J]. J4, 2014, 41(2): 130-136. |
[9] | 罗亮;冯象初;霍雷刚;张选德;吴玉莲;李小平. 非局部MCMC采样和低秩逼近的图像去噪算法[J]. J4, 2013, 40(6): 140-146. |
[10] | 白键;冯象初. 去除乘性噪声的积分微分方程模型[J]. J4, 2013, 40(3): 132-138. |
[11] | 王旭东;冯象初;白键. 基于结构张量场拟合的图像恢复方法[J]. J4, 2011, 38(6): 68-74. |
[12] | 张伟斌;冯象初;王卫卫. 带Besov忠诚项的图像去噪变分模型[J]. J4, 2011, 38(3): 155-158+163. |
[13] | 冯象初;刘涛;李亚峰. 小波域中的广义非局部平均去噪算法[J]. J4, 2010, 37(5): 941-946. |
[14] | 冯象初;郝彬彬;朱见广. 图像去噪的改进迭代非局部平均滤波方法[J]. J4, 2010, 37(4): 722-725+736. |
[15] | 尹奎英;胡利平;刘宏伟;金林. 一种复合的SAR图像去噪算法[J]. J4, 2010, 37(2): 224-230. |
|