西安电子科技大学学报 ›› 2022, Vol. 49 ›› Issue (6): 23-31.doi: 10.19665/j.issn1001-2400.2022.06.004

• 信息与通信工程 • 上一篇    下一篇

一种抑制脉冲噪声的LFM信号参数估计方法

张榆红(),张益鑫(),张超(),包军民()   

  1. 西安工程大学 电子信息学院,陕西 西安 710048
  • 收稿日期:2021-12-10 出版日期:2022-12-20 发布日期:2023-02-09
  • 通讯作者: 张益鑫(1994—),男,西安工程大学硕士研究生,E-mail:yixinzhang94@163.com
  • 作者简介:张榆红(1987—),女,讲师,博士,E-mail:xiaoshan198717@163.com|张 超(1998—),男,西安工程大学硕士研究生,E-mail:zc61300@126.com|包军民(1997—),男,西安工程大学硕士研究生,E-mail:lovesunshine686@163.com
  • 基金资助:
    国家自然科学基金青年基金(61901348)

Parameter estimation method for LFM signals suppressing impulse noise

ZHANG Yuhong(),ZHANG Yixin(),ZHANG Chao(),BAO Junmin()   

  1. School of Electronics and Information,Xi’an Polytechnic University,Xi’an 710048,China
  • Received:2021-12-10 Online:2022-12-20 Published:2023-02-09

摘要:

针对线性调频信号参数估计方法在脉冲噪声下出现参数精度低、依赖噪声的先验知识和适用范围受限制等问题,提出了一种新的线性调频信号参数估计方法。首先引入了吕氏分布的原理,指出在脉冲噪声背景环境下,该算法性能严重下降,在强脉冲噪声下参数估计能力完全失效等问题;然后引用了非线性函数Sigmoid的性质并加以推导,可得经过该函数变换前后的线性调频信号的相位信息不变。把此性质与吕氏分布相结合,用此非线性函数处理原始信号,再除以信号的共轭,然后根据吕氏分布的定义对其对称参数瞬时自相关函数进行二维傅里叶变换,将信号变换到中心频率-调频斜率域,最后根据峰值坐标即可实现对线性调频信号的参数估计。仿真结果表明,对于单分量和双分量线性调频信号,所提出的算法能够有效地抑制脉冲噪声并且不依赖于噪声的先验知识,在强脉冲噪声和极低信噪比下,都可准确地对线性调频信号进行检测和参数估计。该方法实现简单,具有良好的鲁棒性,而且可以实现对复信号的参数估计。

关键词: 线性调频信号, 非线性函数, 吕氏分布, 脉冲噪声, 参数估计

Abstract:

To solve the problems of a low parameter accuracy,noise-dependent prior knowledge and a limited scope of application in the parameter estimation method of Linear Frequency Modulation under impulse noise,a new parameter estimation method of Linear Frequency Modulation signal is proposed.First,the principle of LV’s Distribution is introduced,and it is pointed out that the performance of the algorithm will be seriously degraded under the impulse noise,and that the parameter estimation ability will fail completely under the strong impulse noise.Then,the property of the nonlinear function Sigmoid is quoted and derived,leading to the result that the phase information of the Linear Frequency Modulation signal before and after the nonlinear function transformation remains unchanged.By combining the LV’s Distribution and the properties of the nonlinear function,using the nonlinear function to process the original signal,and then being divided by its conjugate,the two-dimensional Fourier transform of its symmetric parameter instantaneous autocorrelation function is carried out according to the definition of LV’s Distribution,and the signal is transformed into the Centroid Frequency Chirp Rate domain.Finally,the parameter estimation of the Linear Frequency Modulation signal can be realized according to the peak coordinates.Simulation results show that for the single-component and two-component Linear Frequency Modulation signal,the proposed algorithm can effectively suppress impulse noise and does not depend on the prior knowledge of noise,and can accurately estimate the parameter of the Linear Frequency Modulation signals under strong impulse noise and an extremely low signal-to-noise ratio.The method is simple to implement and has good robustness.Moreover,the parameter estimation of complex signals can be realized,which is beneficial to the application in signal processing.

Key words: liner frequency modulation signal, nonlinear function, LV’s distribution, impulse noise, parameter estimation

中图分类号: 

  • TN911.7