[1] |
AKYILDIZ I F, KAK A, NIE S. 6G and Beyond:The Future of Wireless Communications Systems[J]. IEEE Access, 2020, 8(2):133995-134030.
|
[2] |
GEORGANTA S T, VAVELIDIS K, HARALABIDIS N, et al. A 13mm2 40nm Multiband GSM/EDGE/HSPA+TDSCD/LTE Transceiver[C]// 2015 IEEE International Solid-State Circuits Conference.Piscataway:IEEE, 2015:1-3.
|
[3] |
BEFFA F, SIN T Y, TANZIL A, et al. A Receiver for WCDMA/EDGE Mobile Phones with Inductorless Front-End in 65nm CMOS[C]// 2011 IEEE International Solid-State Circuits Conference.Piscataway:IEEE, 2011:370-372.
|
[4] |
CHOI H W, KIM C Y, CHOI S, et al. 6.7-15.3 GHz,High-Performance Broadband Low Noise Amplifier with Large Transistor and Two Stage Broadband Noise Matching[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(8):949-952.
doi: 10.1109/LMWC.2021.3092742
|
[5] |
HU Y L, CHI T Y. A 27-46 GHz Low-Noise Amplifier with Dual Resonant Input Matching and a Transformer Based Broadband Output Network[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(6):725-728.
doi: 10.1109/LMWC.2021.3059592
|
[6] |
CUI B, LONG J. A 1.7 dB Minimum NF,22-32 GHz Low Noise Feedback Amplifier with Multistage Noise Matching in 22 nm FD-SOI CMOS[J]. IEEE Journal of Solid State Circuits, 2020, 55(5):1239-1248.
doi: 10.1109/JSSC.2020.2967548
|
[7] |
TURKMEN E, BURAK A, GUNER A, et al. A SiGe HBT D-Band LNA with Butterworth Response and Noise Reduction Technique[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(6):524-526.
doi: 10.1109/LMWC.2018.2831450
|
[8] |
WANG K P, HAO Z. A 22 to 47 GHz 2 Stage LNA with 22.2 dB Peak Gain by Using Coupled L Type Interstage Matching Inductors[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(12):4607-4617.
doi: 10.1109/TCSI.2020.3019335
|
[9] |
DING T, MENG F, MA K, et al. A 0.1 THz SiGe LNA with Novel Feedback Networks for Bandwidth Extension[C]// 2019 IEEE Asia-Pacific Microwave Conference (APMC).Piscataway:IEEE, 2019:1685-1687.
|
[10] |
LI Z, LIU S, ZHANG C, et al. A 2-20 GHz SiGe HBT Single Stage Cascode LNA with Linearity Enhancement[J]. Microelectronics Journal, 2019, 86(1):130-139.
doi: 10.1016/j.mejo.2019.03.001
|
[11] |
LI Z, LIU B, DUAN Y, et al. Flat-High-Gain Design and Noise Optimization in SiGe Low-Noise Amplifier for S-K Band Applications[J]. Circuits Systems and Signal Processing, 2021, 40(4):2720-2740.
doi: 10.1007/s00034-020-01616-2
|
[12] |
CHIU T Y, Y WANG, WANG H. A 3.7-43.7 GHz Low Power Consumption Variable Gain Distributed Amplifier in 90nm CMOS[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(2):169-172.
doi: 10.1109/LMWC.2020.3042185
|
[13] |
HOSSEINZADEH N, JAIN A, HELKEY R. A Distributed Low Noise Amplifier for Broadband Linearization of a Silicon Photonic Mach Zehnder Modulator[J]. IEEE Journal of Solid State Circuits, 2021, 56(6):1897-1909.
doi: 10.1109/JSSC.2020.3038448
|
[14] |
POZAR D M. Microwave Engineering[M]. Massachusetts: Publishing House of Elec, 2004.
|
[15] |
FRIIS H T. Noise Figures of Radio Receivers[J]. Proceedings of the Ire, 2006, 32(7):419-422.
doi: 10.1109/JRPROC.1944.232049
|
[16] |
CALSKAN C, KALYONCU I, YAZICI M, et al. Ultra Low Noise Amplifier for X-Band SiGe BiCMOS Phased Array Applications[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2019, 66(9):1507-1511.
doi: 10.1109/TCSII.2019.2891133
|
[17] |
KAI J, YIQI Z. Design and Analysis on Four Stage SiGe HBT Low Noise Amplifier[J]. High Technology Letters, 2015, 21(3):116-121.
|
[18] |
HE W, LI Z, YAO Y, et al. A 6-18 GHz Ultra Wideband LNA Using 0.13μm SiGe BiCMOS Technology[C]// 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT).Piscataway:IEEE, 2018:1-3.
|
[19] |
SAHA P K, SHANKAR S, SCHMID R, et al. Analysis and Design of a 3-26 GHz Low Noise Amplifier in SiGe HBT Technology[C]// 2012 IEEE Radio and Wireless Symposium.Piscataway:IEEE, 2012:203-206.
|
[20] |
LIN Y S, WANG C C, LEE G L, et al. High Performance Wideband Low Noise Amplifier Using Enhanced π-Match Input Network[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(3):200-202.
doi: 10.1109/LMWC.2013.2293666
|