[1] |
汪梓艺, 苏育挺, 刘艳艳, 等. 一种改进DeeplabV3网络的烟雾分割算法[J]. 西安电子科技大学学报, 2019, 46(6):52-59.
|
|
WANG Ziyi, SU Yuting, LIU Yanyan, et al. An Improved DeeplabV3 Network Smoke Segmentation Algorithm[J]. Journal of Xidian University, 2019, 46(6):52-59.
|
[2] |
回海生, 张雪英, 吴泽林, 等. 一种主辅路径注意力补偿的脑卒中病灶分割方法[J]. 西安电子科技大学学报, 2021, 48(4):200-208.
|
|
HUI Haisheng, ZHANG Xueying, WU Zelin, et al. Lightweight Image Super-Resolution with the Adaptive Weight Learning Network[J]. Journal of Xidian University, 2021, 48(4):200-208.
|
[3] |
SHELHAMER E, LONG J, DARRELL T. Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39:640-651.
doi: 10.1109/TPAMI.2016.2572683
pmid: 27244717
|
[4] |
LI Y, SHI T, ZHANG Y, et al. Learning Deep Semantic Segmentation Network under Multiple Weakly-Supervised Constraints for Cross-Domain Remote Sensing Image Semantic Segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175:20-33.
doi: 10.1016/j.isprsjprs.2021.02.009
|
[5] |
YUAN X, SHI J, GU L. A Review of Deep Learning Methods for Semantic Segmentation of Remote Sensing Imagery[J]. Expert Systems with Applications, 2021, 169:114417.
doi: 10.1016/j.eswa.2020.114417
|
[6] |
WANG Y, ZHOU Q, LIU J, et al. LEDNet:A Lightweight Encoder-Decoder Network for Real-Time Semantic Segmentation[C]// Proceedings of the 2019 IEEE International Conference on Image Processing(ICIP).Piscataway:IEEE, 2019:1860-1864.
|
[7] |
WANG Y, ZHOU Q, XIONG J, et al. ESNet:An Efficient Symmetric Network for Real-Time Semantic Segmentation[C]// Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision(PRCV).Cham:Springer, 2019:41-52.
|
[8] |
ROMERA E, ALVAREZ J M, BERGASA L M, et al. ERFNet:Efficient Residual Factorized Convnet for Real-Time Semantic Segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(1):263-272.
doi: 10.1109/TITS.2017.2750080
|
[9] |
WANG K, YANG J, YUAN S, et al. A Lightweight Network with Attention Decoder for Real-Time Semantic Segmentation[J]. The Visual Computer, 2021, 38(7):2329-2339.
doi: 10.1007/s00371-021-02115-4
|
[10] |
ZHUANG M, ZHONG X, GU D, et al. LRDNet:A Lightweight and Efficient Network with Refined Dual Attention Decoder for Real-Time Semantic Segmentation[J]. Neurocomputing, 2021, 459:349-360.
doi: 10.1016/j.neucom.2021.07.019
|
[11] |
YU C, WANG J, PENG C, et al. BiSeNet:Bilateral Segmentation Network for Real-Time Semantic Segmentation[C]// Proceedings of the European Conference on Computer Vision(ECCV).Cham:Springer, 2018:334-349.
|
[12] |
WU T, TANG S, ZHANG R, et al. CGNet:A Light-weight Context Guided Network for Semantic Segmentation[J]. IEEE Transactions on Image Processing, 2021, 30:1169-1179.
doi: 10.1109/TIP.83
|
[13] |
GAO G, XU G, YU Y, et al. MSCFNet:A Lightweight Network with Multi-Scale Context Fusion for Real-Time Semantic Segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12):25489-25499.
doi: 10.1109/TITS.2021.3098355
|
[14] |
YANG Q, CHEN T, FAN J, et al. EADNet:Efficient Asymmetric Dilated Network for Semantic Segmentation[C]// Proceedings of the ICASSP 2021-2021 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).Piscataway:IEEE, 2021:2315-2319.
|
[15] |
HE K, ZHANG X, REN S, et al. Identity Mappings in Deep Residual Networks[C]// Proceedings of the European Conference on Computer Vision.Cham:Springer, 2016:630-645.
|
[16] |
CHOLLET F. Xception:Deep Learning with Depthwise Separable Convolutions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017:1800-1807.
|
[17] |
PASZKE A, CHAURASIA A, KIM S, et al. ENet:A Deep Neural Network Architecture for Real-Time Semantic Segmentation[J/OL]. [2016-06-07] https://doi.org/10.48550/arXiv.1606.02147.
|
[18] |
ZHANG X, ZHOU X, LIN M, et al. ShuffleNet:An Extremely Efficient Convolutional Neural Network for Mobile Devices[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:6848-6856.
|
[19] |
成磊, 王玥, 田春娜. 一种添加残差注意力机制的视觉目标跟踪算法[J]. 西安电子科技大学学报, 2020, 47(6):148-157.
|
|
CHENG Lei, WANG Yue, TIAN Chunna. A Visual Object Tracking Algorithm with Residual Attention Mechanism[J]. Journal of Xidian University, 2020, 47(6):148-157.
|
[20] |
宋建锋, 苗启广, 王崇晓, 等. 注意力机制的多尺度单目标跟踪算法[J]. 西安电子科技大学学报, 2021, 48(5):110-116.
|
|
SONG Jianfeng, MIAO Qiguang, WANG Chongxiao, et al. Multi-Scale Single Target Tracking Algorithm Based on Attention Mechanism[J]. Journal of Xidian University, 2021, 48(5):110-116.
|
[21] |
CAO Y, XU J, LIN S, et al. GCNet:Non-Local Networks Meet Squeeze-Excitation Networks and Beyond[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops.Piscataway:IEEE, 2019:1971-1980.
|
[22] |
常新旭, 张杨, 杨林, 等. 融合多头自注意力机制的语音增强方法[J]. 西安电子科技大学学报, 2020, 47(1):104-110
|
|
CHANG Xinxu, ZHANG Yang, YANG Lin, et al. A Speech Enhancement Method Integrating Multi-Head Self-Attention Mechanism[J]. Journal of Xidian University, 2020, 47(1):104-110.
|
[23] |
WOO S, PARK J, LEE J Y, et al. CBAM:Convolutional Block Attention Module[C]// Proceedings of the European Conference on Computer Vision(ECCV).Cham:Springer, 2018:3-19.
|
[24] |
HU J, SHEN L, SUN G. Squeeze-and-Excitation Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023.
doi: 10.1109/TPAMI.2019.2913372
pmid: 31034408
|
[25] |
TIAN Z, HE T, SHEN C, et al. Decoders Matter for Semantic Segmentation:Data-Dependent Decoding Enables Flexible Feature Aggregation[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:3121-3130.
|
[26] |
CORDTS M, OMRAN M, RAMOS S, et al. The Cityscapes Dataset for Semantic Urban Scene Understanding[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:3213-3223.
|
[27] |
KINGMA D P, BA J. Adam:A Method for Stochastic Optimization[J/OL].[2017-01-30]. https://doi.org/10.48550/arXiv.1412.6980.
|
[28] |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized Intersection over Union:A Metric and a Loss for Bounding Box Regression[C] // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:658-666.
|
[29] |
LI H, XIONG P, FAN H, et al. DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:9514-9523.
|
[30] |
ZHAO H, QI X, SHEN X, et al. ICNet for Real-Time Semantic Segmentation on High-Resolution Images[C]// Proceedings of the European Conference on Computer Vision(ECCV).Cham:Springer, 2018:418-434.
|
[31] |
HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:770-778.
|