西安电子科技大学学报 ›› 2023, Vol. 50 ›› Issue (4): 11-21.doi: 10.19665/j.issn1001-2400.2023.04.002

• 网络空间安全专栏 • 上一篇    下一篇

自适应分数级融合的多模态生物特征认证

姜奇1(),赵晓敏1(),赵贵川1(),王金花2(),李兴华1()   

  1. 1.西安电子科技大学 网络与信息安全学院,陕西 西安 710126
    2.中国电子科技集团公司第三十研究所 保密通信重点实验室,四川 成都 610041
  • 收稿日期:2022-12-13 出版日期:2023-08-20 发布日期:2023-10-17
  • 通讯作者: 赵贵川
  • 作者简介:姜奇(1983—),男,教授,E-mail:jiangqixdu@gmail.com;|赵晓敏(1999—),女,西安电子科技大学硕士研究生,E-mail:1546933523@qq.com;|王金花(1995—),女,中国电子科技集团公司第三十研究所助理工程师,E-mail:wjhcetc@163.com;|李兴华(1978—),男,教授,E-mail:xhli1@mail.xidian.edu.cn
  • 基金资助:
    国家自然科学基金(62072352);国家自然科学基金(62125205);国家自然科学基金(92167203);国家自然科学基金(62072359)

Adaptive score-level fusion for multi-modal biometric authentication

JIANG Qi1(),ZHAO Xiaomin1(),ZHAO Guichuan1(),WANG Jinhua2(),LI Xinghua1()   

  1. 1. School of Cyber Engineering,Xidian University,Xi’an 710126,China
    2. Science and Technology on Communication Security Laboratory,The 30th Research Institute of China Electronics Science and Technology Group Corporation,Chengdu 610041,China
  • Received:2022-12-13 Online:2023-08-20 Published:2023-10-17
  • Contact: Guichuan ZHAO

摘要:

近年来,基于生物特征的身份认证在日常生活中扮演着至关重要的角色。多模态认证方法通过融合多种生物特征对用户进行身份认证,可以提供比单模态认证更高的安全性和认证准确性。然而,现有的多模态认证方案大多采用固定参数和规则的融合策略来实现认证,无法适应不同的认证场景,从而导致次优的认证性能。针对上述问题,提出了一种基于自适应粒子群优化算法的自适应分数级融合多模态认证方案。首先,方案根据上下文信息来确定当前认证场景所需的安全等级,接着自适应地选择融合策略的规则和参数,在提供安全身份认证的同时保证系统具有最佳的认证性能。其次,对采集的多模态生物特征数据进行预处理和特征提取,再使用所选择的最优融合策略来实现身份认证。最后,在公开的数据集上对自适应分数级融合的多模态认证方案进行实验分析,结果表明所提方案在真实数据上的可行性和有效性;在相同的认证安全等级下,本方案实现了比现有方案更小的全局错误率。

关键词: 自适应, 多模态, 认证, 分数级融合, 优化算法

Abstract:

In recent years,biometric-based authentication has played a vital role in our daily life.The multi-modal authentication method by fusing multiple biometrics to authenticate users can provide a higher security and authentication accuracy than single-modal authentication.However,most of the existing multi-modal authentication schemes adopt fusion strategies with fixed rules and parameters to achieve authentication,which cannot adapt to different authentication scenarios,thus resulting in a sub-optimal authentication performance.To solve the above problems,this paper proposes an Adaptive Particle Swarm Optimization based multi-modal authentication scheme that adaptively fuses multiple biometrics at the score level.First,the proposed scheme determines the security level required for the current authentication scenario according to the context information,and then adaptively selects rules and parameters of the fusion strategy to provide secure authentication and to ensure the best authentication performance of the system.Second,the collected multi-modal biometric data after preprocessing and feature extraction is fused using the selected optimal fusion strategy to achieve authentication.Finally,experimental analyses on the public dataset demonstrate that the proposed scheme is of feasibility and effectiveness by actual data,and can achieve a smaller global error rate than existing schemes under the same authentication security requirements.

Key words: adaptive, multi-modal, authentication, score-level fusion, optimization

中图分类号: 

  • TN915.08