西安电子科技大学学报 ›› 2024, Vol. 51 ›› Issue (5): 58-70.doi: 10.19665/j.issn1001-2400.20240505

• 信息与通信工程 • 上一篇    下一篇

知识图谱辅助的无人机群频谱资源优化算法

王雨来1(), 廖晓闽1(), 何海光1(), 叶国军2()   

  1. 1.国防科技大学 信息通信学院,湖北 武汉 430035
    2.中国人民解放军32269部队,甘肃 兰州 730000
  • 收稿日期:2023-10-22 出版日期:2024-05-29 发布日期:2024-05-29
  • 通讯作者: 廖晓闽(1984—),女,副教授,E-mail:lxm8410@163.com
  • 作者简介:王雨来(2000—),男,国防科技大学硕士研究生,E-mail:wylai18@163.com
    何海光(1977—),男,副教授,E-mail:hehaiguang1123@sina.com
    叶国军(1986—),男,工程师,E-mail:3211300341@qq.com
  • 基金资助:
    国家自然科学基金(62201582);陕西省自然科学基金(2022JQ-632)

Knowledge graph assisted spectrum resource optimization algorithm for UAVs

WANG Yulai1(), LIAO Xiaomin1(), HE Haiguang1(), YE Guojun2()   

  1. 1. School of Information and Communications,National University of Defense Technology,Wuhan 430035,China
    2. 32269 PLA Troops,Lanzhou 730000,China
  • Received:2023-10-22 Online:2024-05-29 Published:2024-05-29

摘要:

针对无人机群可用频谱资源紧缺及资源优化过程中面临的多目标优化难以求解、完整信道信息难以获取和实时性差等问题,提出了一种知识图谱辅助的无人机群频谱资源优化算法。首先构建一种基于多头注意力机制的关系感知图神经网络编码器,实现无人机群通信参数、性能参数和电磁环境信息的聚合,并根据节点的重要性为邻居信息分配不同的权重;然后构建一种改进型基于层注意力的InteractE模型,使用压缩-激励模块获取层注意力信息,从循环卷积结果中挖掘深层次交互信息,实现无人机群信道接入和发射功率预测。仿真结果表明,在公共数据集上,所提算法收敛速度快、链路预测性能好,并且具有较好的稳定性和鲁棒性;在无人机群频谱管控数据集上,所提算法可以在已知信道分布信息和部分环境信息的情况下,生成近似最优的无人机群频谱资源优化方案。

关键词: 无人机群, 资源分配, 知识图谱, 图神经网络

Abstract:

In response to the scarcity of available spectrum resources in UAV swarms and the difficulties in solving multi-objective optimization problems,as well as the challenges of obtaining complete channel information and poor real-time performance during the resource optimization process,a knowledge graph-assisted spectrum resource optimization algorithm for UAV swarms is proposed.Firstly,a relation-aware graph multi-head attention network(RGMAN) encoder is constructed to aggregate communication parameters,performance parameters,and electromagnetic environment information of the UAV swarm,and allocate different weights to neighbor information based on the importance of the nodes.Then,an improved layer-attention-based InteractE(SE-IE) model is developed to predict the channel access and transmit power for the UAVs,which utilizes a squeeze-and-excitation module to obtain layer attention information and extracts deep-level interactive information from the results of circular convolutions.The simulation results indicate that the proposed algorithm exhibits rapid convergence capability,excellent performance in link prediction,and notable stability and robustness on public datasets.Additionally,on the dataset for UAV swarm spectrum management,the proposed algorithm can generate an approximately optimal spectrum resource optimization scheme for UAV swarms,in the premise of channel distribution information and partial environmental information.

Key words: unmanned aerial vehicle swarm, resource allocation, knowledge graph, graph neural networks

中图分类号: 

  • TN929.52