J4

• 研究论文 • 上一篇    下一篇

基于模糊熵的多值图像恢复方法

王保平1;范九伦2;谢维信3   

  1. (1. 西安电子科技大学 电子工程学院, 陕西 西安 710071;
    2. 西安邮电学院 信控系, 陕西 西安 710061;
    3. 深圳大学 校长办公室, 广东 深圳 518060)

  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2004-04-20 发布日期:2004-04-20

Fuzzy entropy-based method for multilevel image restoration

WANG Bao-ping1;FAN Jiu-lun2;XIE Wei-xin3

  

  1. (1. School of Electronic Engineering, Xidian Univ., Xi'an 710071, China;
    2. Dept. of Information and Control, Xi'an Inst. of Post and Telecommunications, Xi'an 710061, China;
    3. Inst. of Information Eng., Shenzhen Univ., Shenzhen 518060, China)

  • Received:1900-01-01 Revised:1900-01-01 Online:2004-04-20 Published:2004-04-20

摘要: 提出了一种基于模糊熵的多值图像恢复方法.该方法根据熵在应用方面的局限性,对其表示的形式进行了扩展,构造了一类能够反映多值图像特点的模糊熵.仿真结果表明,用模糊熵进行图像恢复的效果明显好于另两种常用的图像恢复方法(中值滤波和均值滤波)得到的结果.另外,在医用图像和军事图像处理方面,多值图像的恢复是非常重要的.

关键词: 模糊熵, 图像恢复, 多值图像

Abstract: A method for multi-level image restoration based on fuzzy entropy is presented. The method can be used to extend the entropy's expression in terms of entropy's limitation on application, and construct a kind of fuzzy entropy that can reflect characteristics of the multi-level image. The simulation results show that the performance of image restoration by using fuzzy entropy is much bettern than those by using one of two usual image noising-reducing methods, the median filter and the mean filter. In addition, noise-reduction in the multi-level images plays an improtant role in medical image processing and military image processing. Therefore, this paper contributes to both the theoretical researches on and the applications of fuzzy entropy.

Key words: fuzzy entropy, image restoration, multi-level image

中图分类号: 

  • TN911.23