J4

• 研究论文 • 上一篇    下一篇

pn-周期二元序列的线性复杂度与k-错线性复杂度

牛志华;董庆宽;肖国镇   

  1. (西安电子科技大学 综合业务网理论及关键技术国家重点实验室, 陕西 西安 710071)

  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2004-08-20 发布日期:2004-08-20

The linear complexity and the k-error linear complexity of pn-periodic binary sequences

NIU Zhi-hua;DONG Qing-kuan;XIAO Guo-zhen

  

  1. (State Key Lab. of Integrated Service Networks, Xidian Univ., Xi'an 710071, China)
  • Received:1900-01-01 Revised:1900-01-01 Online:2004-08-20 Published:2004-08-20

摘要: 密码学意义上强的序列不仅应该具有足够高的线性复杂度,而且当少量比特发生变化时不会引起线性复杂度的急剧下降,即具有足够高的k-错线性复杂度.基于xpn-1在GF(2)上的分解式非常明确和简单的事实,研究了周期为pn的二元序列线性复杂度和k-错线性复杂度之间的关系,给出了k-错线性复杂度严格小于线性复杂度的一个充分必要条件,给出了使得LC(S+E)<LC(S)成立的用错误多项式EN(x)表达的一个充分条件,给出了使得LCk(S)<LC(S)成立的最小的k值(即最小错误minerror(S))的一个上界,这里p为奇素数,z是模p的本原根.

关键词: 流密码, 周期序列, 线性复杂度, k-错线性复杂度

Abstract: Not only should cryptographically strong sequences have a large linear complexity, but also the change of a few terms should not cause a significant decrease in linear complexity. This requirement leads to the concept of the k-error linear complexity of periodic sequences. A relationship between the linear complexity and the k-error linear complexity of pn-periodic sequences over GF(2) is studied, where p is an odd prime, and z is a primitive root modular p2. A necessary and sufficient condition that the k-error linear complexity be strictly less than the linear complexity is shown. A sufficient condition expressed by the error polynomial EN(x) that LC(S+E)k(S)

Key words: stream cipher, periodic sequence, linear compexity, k-error linear complexity

中图分类号: 

  • TN918.4