诸如合同、证明文件和通知书等一些重要的文档材料,常常以电子图像格式被存储和传播。然而,由于包含关键的文字信息,此类图像往往容易被非法篡改利用,造成严重的社会影响和危害;与此同时,考虑到个人的隐私安全问题,人们往往也会对这类图像做脱除敏感信息处理。恶意篡改与脱敏均会给原始图像引入额外痕迹,但在动机上存在区别,且在操作方式上也存在一定差异。因此,有必要对二者进行区分,从而更准确地定位出篡改区域。针对这个问题,提出了一个卷积编解码网络,通过U形连接获取编码器多级特征,有效学习篡改和脱敏处理痕迹;同时,在解码网络引入多个挤压激励注意力机制模块,抑制图像内容,关注更微弱的处理痕迹,提高网络的检测能力。为了有效地辅助网络训练,构建了一个包含常见篡改操作和脱敏操作的文档图像取证数据集。实验结果表明,算法模型在此数据集上表现良好,在公开的篡改数据集上也有不错的性能,并优于对比算法。同时,所提的算法对几种常见的后处理操作具有较好的鲁棒性。