针对采用大型卷积神经网络提取高维特征进行人脸识别时占用内存空间较大以及消耗大量计算资源的问题,提出一种结合全局与局部池化的深度哈希全卷积神经网络.第一,提出一种基于全局平均池化层的全卷积网络,用以减少网络参数以及压缩模型尺寸;第二,提出一种学习不同特征的融合损失方法,将哈希量化误差损失与分类损失进行加权融合,用以学习具有多分类性质的近似哈希编码.实验表明,该方法能够在Visual Geometry Group(VGG)框架下将识别效率提高68%,且准确率略有提升;融合损失方法扩展到Face Residual Network (Face-ResNet)框架时,在保持准确率的情况下将识别效率提高了23.7%。结果表明,该方法可在保证准确率的前提下有效地从特征提取和特征降维两方面提高识别效率,同时该方法还可扩展用于其他网络.