[1] |
MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics.Piscataway:IEEE, 2017:1273-1282.
|
[2] |
顾育豪, 白跃彬. 联邦学习模型安全与隐私研究进展(2022)[J/OL].[2022-09-20]. http://www.jos.org.cn/1000-9825/6658.htm.
|
|
GU Yuhao, BAI Yuebin. Survey on Security and Privacy of Federated Learning Models (2022)[J/OL].[2022-09-20]. http://www.jos.org.cn/1000-9825/6658.htm.
|
[3] |
HOSSEINI S M, SIKAROUDI M, BABAEI M, et al. Cluster Based Secure Multi-Party Computation in Federated Learning for Histopathology Images[C]// International Workshop on Distributed,Collaborative,and Federated Learning,Workshop on Affordable Healthcare and AI for Resource Diverse Global Health.Heidelberg:Springer, 2022:110-118.
|
[4] |
KANAGAVELU R, WEI Q, LI Z, et al. CE-Fed:Communication Efficient Multi-Party Computation Enabled Federated Learning[J]. Array, 2022, 15(9):100207.
doi: 10.1016/j.array.2022.100207
|
[5] |
MA J, NAAS S A, SIGG S, et al. Privacy-Preserving Federated Learning Based on Multi-Key Homomorphic Encryption[J]. International Journal of Intelligent Systems, 2022, 37(9):5880-5901.
doi: 10.1002/int.v37.9
|
[6] |
PARK J, LIM H. Privacy-Preserving Federated Learning Using Homomorphic Encryption[J]. Applied Sciences, 2022, 12(2):734.
doi: 10.3390/app12020734
|
[7] |
张泽辉, 富瑶, 高铁杠. 支持数据隐私保护的联邦深度神经网络模型研究[J]. 自动化学报, 2022, 48(5):1273-1284.
|
|
ZHANG Zehui, FU Yao, GAO Tiegang. Research on Federated Deep Neural Network Model for Data Privacy Preserving[J]. Acta Automatica Sinica, 2022, 48(5):1273-1284.
|
[8] |
徐花, 田有亮. 差分隐私下的权重社交网络隐私保护[J]. 西安电子科技大学学报, 2022, 49(1):17-25.
|
|
XU Hua, TIAN Youliang. Protection of Privacy of the Weighted Social Network under Differential Privacy[J]. Journal of Xidian University, 2022, 48(5):17-25.
|
[9] |
刘艺璇, 陈红, 刘宇涵, 等. 联邦学习中的隐私保护技术[J]. 软件学报, 2022, 33(3):1057-1092.
|
|
LIU Yixuan, CHEN Hong, LIU Yuhan, et al. Privacy-preserving Techniques in Federated Learning[J]. Journal of Software, 2022, 33(3):1057-1092.
|
[10] |
TRUEX S, LIU L, CHOW K H, et al. LDP-Fed:Federated Learning with Local Differential Privacy[C]// Proceedings of the Third ACM International Workshop on Edge Systems,Analytics and Networking. New York: ACM, 2020:61-66.
|
[11] |
SUN L, QIAN J, CHEN X. LDP-FL:Practical Private Aggregation in Federated Learning with Local Differential Privacy (2021)[J/OL].[2021-05-21]. https://arxiv.org/pdf/2007.15789v2.pdf.
|
[12] |
ZHAO Y, ZHAO J, YANG M, et al. Local Differential Privacy-Based Federated Learning for Internet of Things[J]. IEEE Internet of Things Journal, 2020, 8(11):8836-8853.
doi: 10.1109/JIOT.2020.3037194
|
[13] |
CHAMIKAPA M P A, LIU D, CAMTEPE S, et al. Local Differential Privacy for Federated Learning[C]// European Symposium on Research in Computer Security.Heidelberg:Springer, 2022:195-216.
|
[14] |
ZHAO J, YANG M, ZHANG R, et al. Privacy-Enhanced Federated Learning:A Restrictively Self-Sampled and Data-Perturbed Local Differential Privacy Method[J]. Electronics, 2022, 11(23):4007.
doi: 10.3390/electronics11234007
|
[15] |
LIU X, LI H, XU G, et al. Adaptive Privacy-Preserving Federated Learning[J]. Peer-to-Peer Networking and Applications, 2020, 13(6):2356-2366.
doi: 10.1007/s12083-019-00869-2
|
[16] |
WU X, ZHANG Y, SHI M, et al. An Adaptive Federated Learning Scheme with Differential Privacy Preserving[J]. Future Generation Computer Systems, 2022, 127(2):362-372.
doi: 10.1016/j.future.2021.09.015
|
[17] |
朱建明, 张沁楠, 高胜, 等. 基于区块链的隐私保护可信联邦学习模型[J]. 计算机学报, 2021, 44(12):2464-2484.
|
|
ZHU Jianming, ZHANG Qinnan, GAO Sheng, et al. Privacy Preserving and Trustworthy Federated Learning Model Based on Blockchain[J]. Chinses Journal of Computers, 2021, 44(12):2464-2484.
|
[18] |
HU R, GONG Y, GUO Y. Federated Learning with Sparsified Model Perturbation:Improving Accuracy under Client-Level Differential Privacy (2022)[J/OL].[2022-11-15]. https://arxiv.org/pdf/2202.07178v2.pdf.
|
[19] |
LIU W, CHENG J, WANG X, et al. Hybrid Differential Privacy Based Federated Learning for Internet of Things[J]. Journal of Systems Architecture, 2022, 124(3):102418.
doi: 10.1016/j.sysarc.2022.102418
|
[20] |
SHEN X, LIU Y, ZHANG Z. Performance-Enhanced Federated Learning with Differential Privacy for Internet of Things[J]. IEEE Internet of Things Journal, 2022, 9(23):24079-24094.
doi: 10.1109/JIOT.2022.3189361
|
[21] |
LIAN Z, WANG W, HUANG H, et al. Layer-Based Communication-Efficient Federated Learning with Privacy Preservation[J]. IEICE Transactions on Information and Systems, 2022, 105(2):256-263.
|
[22] |
BAEK C, KIM S, NAM D, et al. EnhancingDifferential Privacy for Federated Learning at Scale[J]. IEEE Access, 2021, 9(10):148090-148103.
doi: 10.1109/ACCESS.2021.3124020
|
[23] |
YANG Q, LIU Y, CHEN T, et al. Federated Machine Learning:Concept and Applications[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2019, 10(2):1-19.
|
[24] |
DWORK C, ROTH A. The Algorithmic Foundations of Differential Privacy[J]. Foundations and Trends in Theoretical Computer Science, 2014, 9(3):211-407.
doi: 10.1561/0400000042
|
[25] |
DWORK C, ROTHBLUM G N, VADHAN S. Boosting and differential privacy[C]// 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.Piscataway:IEEE, 2010:51-60.
|