Journal of Xidian University ›› 2024, Vol. 51 ›› Issue (5): 82-96.doi: 10.19665/j.issn1001-2400.20240310
• Computer Science and Technology & Cyberspace Security • Previous Articles Next Articles
MU Caihong1(), ZHANG Fugui1(
), YAN Xiangrong1(
), LIU Yi2(
)
Received:
2024-01-06
Online:
2024-04-19
Published:
2024-04-19
Contact:
LIU Yi
E-mail:caihongm@mail.xidian.edu.cn;fuguizhang@stu.xidan.edu.cn;xryan@stu.xidian.edu.cn;yiliu@xidian.edu.cn
CLC Number:
MU Caihong, ZHANG Fugui, YAN Xiangrong, LIU Yi. Subspace andmemory bank for cross-domain few-shot classification of hyperspectral images[J].Journal of Xidian University, 2024, 51(5): 82-96.
"
类别 | Chikusei | Indian Pines | ||
---|---|---|---|---|
地物类别 | 数量 | 地物类别 | 数量 | |
1 | Water | 2 845 | Alfalfa | 46 |
2 | Bare soil(school) | 2 859 | Corn-notill | 1 428 |
3 | Bare soil(park) | 286 | Corn-mintill | 830 |
4 | Bare soil(farmland) | 4 852 | Corn | 237 |
5 | Natural plants | 4 297 | Grass-pasture | 483 |
6 | Weeds in farmland | 1 108 | Grass-trees | 730 |
7 | Forest | 20 516 | Grass-pasture-mowed | 28 |
8 | Grass | 6 515 | Hay-windrowed | 478 |
9 | Rice field(grown) | 13 369 | Oats | 20 |
10 | Rice field(first stage) | 1 268 | Soybean-notill | 972 |
11 | Row crops | 5 961 | Soybean-mintill | 2455 |
12 | Plastic house | 2 193 | Soybean-clean | 593 |
13 | Manmade(non-dark) | 1 220 | Wheat | 205 |
14 | Manmade(dark) | 7 664 | Woods | 1 265 |
15 | Manmade(blue) | 431 | Buildings-Grass-Trees-Drives | 386 |
16 | Manmade(red) | 222 | Stone-Steel-Towers | 93 |
17 | Manmade grass | 1 040 | ||
18 | Asphalt | 801 | ||
19 | Paved ground | 145 |
"
类别 | Salinas | Pavia University | ||
---|---|---|---|---|
地物类别 | 数量 | 地物类别 | 数量 | |
1 | Brocoli_green_weeds_1 | 2 009 | Asphalt | 6 631 |
2 | Brocoli_green_weeds_2 | 3 726 | Meadows | 18 649 |
3 | Fallow | 1 976 | Gravel | 2 099 |
4 | Fallow_rough_plow | 1 394 | Trees | 3 064 |
5 | Fallow_smooth | 2 678 | Painted metal sheets | 1 345 |
6 | Stubble | 3 959 | Bare soil | 5 029 |
7 | Celery | 3 579 | Bitumen | 1 330 |
8 | Grapes_untrained | 11 271 | Self-Blocking Bricks | 3 682 |
9 | Soil_vinyard_develop | 6 203 | Shadows | 947 |
10 | Corn_senesced_green_weeds | 3 278 | ||
11 | Lettuce_romaine_4wk | 1 068 | ||
12 | Lettuce_romaine_5wk | 1 927 | ||
13 | Lettuce_romaine_6wk | 916 | ||
14 | Lettuce_romaine_7wk | 1 070 | ||
15 | Vinyard_untrained | 7 268 | ||
16 | Vinyard_vertical_trellis | 1 807 |
"
数据集 | 度量 | DCFSL | Gia-CFSL | CMFSL | RPCL-FSL | SMB-CFSL |
---|---|---|---|---|---|---|
Salinas | OA (%) | 89.41±1.85 | 87.21±2.87 | 89.65±2.28 | 89.99±1.71 | 89.68±2.76 |
AA (%) | 93.91±1.08 | 92.26±1.23 | 93.35±1.21 | 93.80±0.93 | 94.01±1.83 | |
Kappa | 88.24±2.03 | 85.81±3.14 | 88.72±2.09 | 88.88±1.88 | 89.79±4.33 | |
Indian Pines | OA (%) | 64.28±3.76 | 65.65±2.74 | 67.56±3.48 | 73.73±1.81 | 74.48±2.72 |
AA (%) | 76.11±1.93 | 76.55±2.53 | 79.33±1.03 | 83.69±1.13 | 83.74±1.72 | |
Kappa | 59.79±3.99 | 61.23±2.95 | 63.15±3.12 | 70.43±2.06 | 71.19±3.01 | |
Pavia University | OA (%) | 81.07±2.58 | 82.43±3.01 | 82.32±3.71 | 83.53±2.02 | 85.17±1.76 |
AA (%) | 81.88±1.54 | 82.32±2.05 | 84.89±1.45 | 85.69±2.74 | 86.60±2.51 | |
Kappa | 75.56±3.02 | 77.17±3.64 | 77.31±4.06 | 78.71±2.55 | 80.69±2.08 |
"
数据集 | 参数值 | DCFSL | Gia-CFSL | CMFSL | RPCL-FSL |
---|---|---|---|---|---|
Salinas | t值(↑) | 0.728 726 27 | 2.608 899 55 | 0.897 214 41 | -0.038 432 97 |
p值(↓) | 0.476 431 15 | 0.021 910 73 | 0.381 473 85 | 0.969 788 71 | |
Indian Pines | t值(↑) | 6.592 587 44 | 6.927 111 21 | 4.975 521 20 | 0.400 626 53 |
p值(↓) | 0.000 007 29 | 0.000 001 91 | 0.000 148 61 | 0.693 815 07 | |
Pavia University | t值(↑) | 3.228 659 86 | 2.009 694 51 | 2.185 786 60 | 1.439 499 76 |
p值(↓) | 0.004 699 70 | 0.059 750 37 | 0.042 307 810 | 0.168 993 51 |
"
模块 | Salinas | IndianPines | Pavia University | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SS | TS | MB | CL | OA(%) | AA(%) | Kappa | OA(%) | AA(%) | Kappa | OA(%) | AA(%) | Kappa |
√ | √ | √ | × | 87.96± 1.87 | 92.56± 1.33 | 87.03± 1.71 | 73.60± 3.26 | 83.07± 2.46 | 70.15± 3.61 | 83.44± 2.12 | 83.97± 2.87 | 78.36± 2.61 |
√ | √ | × | √ | 88.56± 1.70 | 93.08± 1.25 | 87.74± 1.87 | 73.94± 3.13 | 82.93± 1.90 | 70.53± 3.48 | 84.55± 2.41 | 85.58± 1.15 | 79.93± 2.83 |
√ | × | √ | √ | 89.47± 2.14 | 93.83± 1.39 | 88.31± 2.35 | 74.23± 3.11 | 83.23± 2.27 | 70.86± 3.46 | 83.98± 2.02 | 85.18± 2.32 | 79.24± 2.45 |
× | √ | √ | √ | 89.01± 1.47 | 93.41± 0.59 | 87.79± 1.60 | 69.69± 2.81 | 80.19± 2.38 | 65.73± 3.15 | 84.57± 1.99 | 85.56± 2.01 | 79.85± 2.48 |
× | × | √ | √ | 87.63± 2.22 | 92.27± 2.24 | 86.25± 2.46 | 69.87± 3.47 | 79.76± 2.55 | 66.00± 3.78 | 80.93± 2.60 | 80.61± 2.51 | 75.19± 3.23 |
√ | √ | √ | √ | 89.68± 2.76 | 94.01± 1.83 | 89.79± 4.33 | 74.48± 2.72 | 83.74± 1.72 | 71.19± 3.01 | 85.17± 1.76 | 86.60± 2.51 | 80.69± 2.08 |
[1] | MU C H, ZENG Q Z, LIU Y, et al. A Two-Branch Network Combined with Robust Principal Component Analysis for Hyperspectral Image Classification[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(12):2147-2151. |
[2] | BENEDIKTSSON J A, PALMASON J A, SVEINSSON J R. Classification of Hyperspectral Data from Urban Areas Based on Extended Morphological Profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3):480-491. |
[3] | SAMANIEGO L, BÁRDOSSY A, SCHULZ K. Supervised Classification of Remotely Sensed Imagery Using a Modified k-NN Technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(7):2112-2125. |
[4] | MELGANI F, BRUZZONE L. Classification of Hyperspectral Remote Sensing Images with Support Vector Machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8):1778-1790. |
[5] | CHEN Y, LIN Z, ZHAO X, et al. Deep Learning-Based Classification of Hyperspectral Data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2094-2107. |
[6] | MU C H, DONG Z D, LIU Y. A Two-Branch Convolutional Neural Network Based on Multi-Spectral Entropy Rate Superpixel Segmentation for Hyperspectral Image Classification[J]. Remote Sensing, 2022; 14(7):1569. |
[7] | 杨建功, 汪西莉, 刘侍刚. 融合谱-空域信息的DBM高光谱图像分类方法[J]. 西安电子科技大学学报, 2019, 46(3):109-115. |
YANG Jiangong, WANG Xili, LIU Shigang. Spectral-Spatial Classification of Hyperspectral Images Using Deep Boltzmann Machines. Journal of Xidian University, 2019, 46(3):109-115. | |
[8] | LI W, CHEN C, ZHANG M, et al. Data Augmentation for Hyperspectral Image Classification with Deep CNN[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 16(4):593-597. |
[9] | SHI M, REN J. ALightweight Dense Relation Network with Attention for Hyperspectral Image Few-Shot Classification[J]. Engineering Applications of Artificial Intelligence, 2023, 126:106993. |
[10] | 孙一帆, 余旭初, 谭熊, 等. 面向小样本高光谱影像分类的轻量化关系网络[J]. 武汉大学学报(信息科学版), 2022, 47(8):1336-1348. |
SUN Yifan, YUXuchu, TAN Xiong, et al. Lightweight Relational Network for Small Sample Hyperspectral Image Classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8):1336-1348. | |
[11] | LIU B, YU X, ZHANG P, et al. A Semi-Supervised Convolutional Neural Network for Hyperspectral Image Classification[J]. Remote Sensing Letters, 2017, 8(9):839-848. |
[12] | LI Z, GUO H, CHEN Y, et al. Few-Shot Hyperspectral Image Classification with Self-Supervised Learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-17. |
[13] | DI X, XUE Z, ZHANG M. ActiveLearning-Driven Siamese Network for Hyperspectral Image Classification[J]. Remote Sensing, 2023, 15(3):752. |
[14] |
左溪冰, 刘智, 金飞, 等. 面向高光谱影像小样本分类的全局-局部特征自适应融合方法[J]. 地球信息科学学报, 2023, 25(8):1699-1716.
doi: 10.12082/dqxxkx.2023.230058 |
ZUO Xibing, LIU Zhi, JIN Fei, et al. Global-Local Feature Adaptive Fusion Method for Small Sample Classification of Hyperspectral Images[J]. Journal of Geo-information Science, 2023, 25(8):1699-1716. | |
[15] | NING Y, PENG J, LIU Q, et al. ContrastiveLearning Based on Category Matching for Domain Adaptation in Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-14. |
[16] | WANG H, LIU X. Focal Transfer Graph Network and Its Application in Cross-Scene Hyperspectral Image Classification[J]. IEEE Transactions on Artificial Intelligence, 2024(Early Access):1-13. |
[17] | YANG Y, XU Y, WU Z, et al. Cross-Scene Classification of Hyperspectral Images via Generative Adversarial Network in Latent Space[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-17. |
[18] | LI Z, LIU M, CHEN Y, et al. Deep Cross-Domain Few-Shot Learning for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5501618. |
[19] | ZHANG Y, LI W, ZHANG M, et al. Graph Information Aggregation Cross-Domain Few-Shot Learning for Hyperspectral Image Classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(2):1912-1925. |
[20] | XI B, LI J, LI Y, et al. Few-Shot Learning with Class-Covariance Metric for Hyperspectral Image Classification[J]. IEEE Transactions on Image Processing, 2022, 31:5079-5092. |
[21] | LIU Q, PENG J, NING Y, et al. Refined Prototypical Contrastive Learning for Few-Shot Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5506214. |
[22] | KHOSLA P, TETERWAK P, WANG C, et al. Supervised Contrastive Learning[J]. Advances in Neural Information Processing Systems, 2020, 33:18661-18673. |
[23] | PAL D, BUNDELE V, SHARMA R, et al. Few-Shot Open-Set Recognition of Hyperspectral Images with Outlier Calibration Network[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway:IEEE, 2022:3801-3810. |
[24] | SIMON C, KONIUSZ P, NOCK R, et al. Adaptive Subspaces for Few-Shot Learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2020:4136-4145. |
[25] | BAI J, HUANG S, XIAO Z, et al. Few-Shot Hyperspectral Image Classification Based on Adaptive Subspaces and Feature Transformation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5523917. |
[26] |
HUANG W, SHI Y, XIONG Z, et al. Semi-Supervised Bidirectional Alignment for Remote Sensing Cross-Domain Scene Classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 195:192-203.
doi: 10.1016/j.isprsjprs.2022.11.013 pmid: 36726963 |
[1] | GONG Junyang, FU Weihong, FANG Houzhang. Research on lightweight and feature enhancement of SAR image ship targets detection [J]. Journal of Xidian University, 2024, 51(2): 96-106. |
[2] | ZHU Dongxia, JIA Hongjie, HUANG Longxia. Subspace clustering algorithm optimized by non-negative Lagrangian relaxation [J]. Journal of Xidian University, 2024, 51(1): 100-113. |
[3] | XIE Wen,HUA Wenqiang,JIAO Licheng,WANG Ruonan. Review on polarimetric SAR terrain classification methods using deep learning [J]. Journal of Xidian University, 2023, 50(3): 151-170. |
[4] | YANG Liying,MENG Tianhao,ZHANG Qingyang,CHAO Si. Implementation of EEG emotion analysis via feature fusion [J]. Journal of Xidian University, 2022, 49(6): 95-102. |
[5] | REN Jiaxing, CAO Yudong, CAO Rui, YAN Jia. Algorithm for classification of few-shot images by dynamic subspace [J]. Journal of Xidian University, 2022, 49(5): 166-174. |
[6] | MA Lun,LIU Xin,ZHAO Bin,WANG Ruiping,LIAO Guisheng,ZHANG Yajing. Impaired behavior recognition by using the multi-head-siamese neural network [J]. Journal of Xidian University, 2022, 49(4): 100-108. |
[7] | TAO Yang,YANG Na,GUO Tan. Discrimination and structure preserved cross-domain subspace learning for unsupervised domain adaption [J]. Journal of Xidian University, 2022, 49(4): 90-99. |
[8] | LIU Jieyi,GONG Maoguo,ZHAN Tao,LI Hao,ZHANG Mingyang. Method for discrimination of false targets in multistation radar systems based on the deep neural network [J]. Journal of Xidian University, 2021, 48(2): 133-138. |
[9] | WEI Ziyu,YANG Xi,WANG Nannan,YANG Dong,GAO Xinbo. Reciprocal bi-directional generative adversarial network for cross-modal pedestrian re-identification [J]. Journal of Xidian University, 2021, 48(2): 205-212. |
[10] | GUO Zekun,TIAN Long,HAN Ning,WANG Penghui,LIU Hongwei,CHEN Bo. Radar HRRP based few-shot target recognition with CNN-SSD [J]. Journal of Xidian University, 2021, 48(2): 7-14. |
[11] | HAN Zhuoxi,WANG Feng,CHEN Pei,LI Zhuolun. Fuzzy data association algorithm assisted by historical features [J]. Journal of Xidian University, 2021, 48(2): 92-98. |
[12] | LIU Daohua,WANG Shasha,YANG Zhipeng,CUI Yushuang. Improved face image classification method based on the local embedding network [J]. Journal of Xidian University, 2020, 47(4): 18-23. |
[13] | WANG Xiaohua,YAO Pengchao,MA Liping,WANG Wenjie,ZHANG Lei. Algorithm for extraction of features of robot speech control in the factory environment [J]. Journal of Xidian University, 2020, 47(2): 16-22. |
[14] | SONG Jianfeng,WEI Yue,MIAO Qiguang,QUAN Yining,CHEN Yusheng. Urine cell image classification algorithm based on the squeeze and excitation mechanism [J]. Journal of Xidian University, 2020, 47(2): 39-45. |
[15] | WANG Hongyan,ZHU Limin,ZHANG Panjie,LI Jinping. Method for the detection of the piston side defect based on external contour registration [J]. Journal of Xidian University, 2019, 46(5): 75-83. |
|