Journal of Xidian University ›› 2024, Vol. 51 ›› Issue (6): 73-83.doi: 10.19665/j.issn1001-2400.20240702
• Information and Communications Engineering • Previous Articles Next Articles
XU Haitao1,2(), LIU Yuzhe3(
), YAN Xinyi3(
), LI Jiaojiao3(
), XUE Changbin1(
)
Received:
2024-04-21
Online:
2024-12-20
Published:
2024-07-18
Contact:
LI Jiaojiao, XUE Changbin
E-mail:xuhaitao@nssc.ac.cn;yuzheliu@stu.xidian.edu.cn;20009101594@stu.xidian.edu.cn;jjli@xidian.edu.cn;xuechangbin@nssc.ac.cn
CLC Number:
XU Haitao, LIU Yuzhe, YAN Xinyi, LI Jiaojiao, XUE Changbin. Fusion classification network for hyperspectral and LiDAR eature coupling modeling[J].Journal of Xidian University, 2024, 51(6): 73-83.
"
类别(Houston2013) | 样本数 | 类别(TRENTO) | 样本数 | ||||
---|---|---|---|---|---|---|---|
编号 | 名称 | 训练 | 测试 | 编号 | 名称 | 训练 | 测试 |
1 | 健康草地 | 198 | 1053 | 1 | 树木 | 129 | 3905 |
2 | 倒伏草地 | 190 | 1064 | 2 | 建筑物 | 125 | 2778 |
3 | 人造草皮 | 192 | 505 | 3 | 地面 | 105 | 374 |
4 | 树木 | 188 | 1056 | 4 | 森林 | 154 | 8969 |
5 | 土壤 | 186 | 1056 | 5 | 葡萄园 | 184 | 10317 |
6 | 水源 | 182 | 143 | 6 | 道路 | 122 | 3525 |
7 | 住宅区 | 196 | 1072 | ||||
8 | 商业区 | 191 | 1053 | ||||
9 | 道路 | 193 | 1059 | ||||
10 | 高速路 | 191 | 1036 | ||||
11 | 铁路 | 181 | 1054 | ||||
12 | 停车场1 | 192 | 1041 | ||||
13 | 停车场2 | 184 | 285 | ||||
14 | 网球场 | 181 | 247 | ||||
15 | 跑道 | 187 | 473 | ||||
总计 | 2832 | 12197 | 总计 | 819 | 29595 |
"
类别 | CNN-PPF | Two-Branch | HRWN | ViT | SpectralFormer | DHViT | Ours |
---|---|---|---|---|---|---|---|
树木 | 97.13% | 89.29% | 91.45% | 87.35% | 96.08% | 94.65% | 99.54% |
建筑物 | 92.12% | 91.22% | 97.83% | 81.21% | 95.86% | 98.42% | 99.35% |
地面 | 98.93% | 83.72% | 92.48% | 96.79% | 95.99% | 81.55% | 99.73% |
森林 | 99.10% | 98.08% | 98.31% | 97.42% | 97.99% | 99.96% | 99.78% |
葡萄园 | 96.74% | 100.00% | 99.86% | 74.66% | 95.25% | 99.75% | 98.35% |
道路 | 68.32% | 87.27% | 83.08% | 69.95% | 57.76% | 86.14% | 93.84% |
AA | 94.14% | 95.55% | 96.19% | 84.57% | 92.37% | 96.62% | 98.48% |
OA | 92.05% | 91.61% | 93.84% | 83.70% | 89.82% | 93.61% | 98.65% |
Kappa | 0.9216 | 0.9403 | 0.9419 | 0.7844 | 0.8982 | 0.9547 | 0.9819 |
"
类别 | CNN-PPF | Two-Branch | HRWN | ViT | SpectralFormer | DHViT | 文中算法 |
---|---|---|---|---|---|---|---|
健康草地 | 83.00% | 83.10% | 85.31% | 82.72% | 81.86% | 81.58% | 95.73% |
倒伏草地 | 84.12% | 84.87% | 83.79% | 80.45% | 100.00% | 78.48% | 87.78% |
人造草皮 | 100.00% | 100.00% | 99.05% | 99.60% | 95.25% | 74.26% | 99.80% |
树木 | 88.54% | 92.14% | 92.30% | 92.42% | 96.12% | 90.25% | 92.33% |
土壤 | 100.00% | 97.73% | 100.00% | 97.73% | 99.53% | 99.72% | 99.15% |
水源 | 97.20% | 68.53% | 97.28% | 95.80% | 94.41% | 87.41% | 86.01% |
住宅区 | 83.40% | 87.33% | 89.33% | 74.44% | 83.12% | 84.70% | 95.71% |
商业区 | 46.25% | 70.75% | 93.74% | 42.55% | 76.73% | 95.35% | 91.36% |
道路 | 84.04%± | 84.51% | 88.66% | 65.25% | 79.32% | 77.15% | 88.86% |
高速路 | 56.37% | 62.64% | 86.17% | 50.77%% | 78.86% | 42.47% | 81.08% |
铁路 | 80.08% | 76.47% | 92.75% | 71.44% | 88.71% | 79.60% | 86.62% |
停车场1 | 87.42% | 91.26% | 96.47% | 56.00% | 87.32% | 96.45% | 85.49% |
停车场2 | 82.81% | 8.12% | 91.93% | 64.21% | 72.63% | 79.30% | 88.42% |
网球场 | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 99.60% | 90.28% |
跑道 | 98.94% | 98.93% | 100.00% | 98.52% | 100.00% | 87.53% | 100.00% |
AA | 84.81% | 82.70% | 90.47% | 78.13% | 88.91% | 83.59% | 91.24% |
OA | 81.69% | 80.42% | 89.67% | 74.36% | 88.01% | 82.79% | 91.10% |
Kappa | 0.803 | 0.8124 | 0.8828 | 0.7243 | 0.8699 | 0.8137 | 0.9033 |
[1] | 张良培, 沈焕锋. 遥感数据融合的进展与前瞻[J]. 遥感学报, 2016, 20(5):1050-1061. |
ZHANG Liangpei, SHEN Huanfeng. Progress andFuture of Remote Sensing Data Fusion[J]. National Remote Sensing Bulletin, 2016, 20(5):1050-1061. | |
[2] | 赵伍迪, 李山山, 李安. 结合深度学习的高光谱与多源遥感数据融合分类[J]. 遥感学报, 2021, 25(7):1489-1502. |
ZHAO Wudi, LI Shanshan, LI An, et al. DeepFusion of Hyperspectral Images and Multi-Source Remote Sensing Data for Classification with Convolutional Neural Network[J]. National Remote Sensing Bulletin, 2021, 25(7):1489-1502. | |
[3] | WANG J, LI W, GAO Y, et al. Hyperspectral and SAR Image Classification via Multiscale Interactive Fusion Network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12):10823-10837. |
[4] | ZHU X X, TUIA D, MOU L, et al. Deep Learning in Remote Sensing:A Comprehensive Review and List of Resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4):8-36. |
[5] | BALL J E, ANDERSON D T, CHAN C S. Comprehensive Survey of Deep Learning in Remote Sensing:Theories,Tools,and Challenges for the Community[J]. Journal of Applied Remote Sensing, 2017, 11(4):042609. |
[6] | CHENG G, XIE X, HAN J, et al. Remote Sensing Image Scene Classification Meets Deep Learning:Challenges,Methods,Benchmarks,and Opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:3735-3756. |
[7] | JIN Q, LUO J, LI Y, et al. Scene Classification of Remote Sensing Images Based on Improved HrNet[C]// 2023 3rd International Conference on Electronic Information Engineering and Computer Science(EIECS). Piscataway:IEEE, 2023:952-958. |
[8] | ZHANG Z, MI X, YANG J, et al. Remote Sensing Image Scene Classification in Hybrid Classical-Quantum Transferring CNN with Small Samples[J]. Sensors, 2023, 23(18):8010. |
[9] | 王梨名, 祁昆仑, 杨超. 弱监督尺度自适应增强的高分辨率遥感影像场景分类[J]. 遥感学报, 2023, 27(12):2815-2830. |
WANG Liming, QI Kunlun, YANG Chao, et al. Weakly Supervised Scale Adaptation Data Augmentation for Scene Classification of High-Resolution Remote Sensing Images[J]. National Remote Sensing Bulletin, 2023, 27(12):2815-2830. | |
[10] | KROUPI E, KESA M, NAVARRO-SÁNCHEZ V D, et al. Deep Convolutional Neural Networks for Land-Cover Classification with Sentinel-2 Images[J]. Journal of Applied Remote Sensing, 2019, 13(2):024525. |
[11] | He M, Li B, Chen H. Multi-scale 3D Deep Convolutional Neural Network for Hyperspectral Image Classification[C]// 2017 IEEE International Conference on Image Processing (ICIP). Piscataway:IEEE, 2017:3904-3908. |
[12] | YANG X, YE Y, LI X, et al. Hyperspectral Image Classification with Deep Learning Models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9):5408-5423. |
[13] | 薛朝辉, 张瑜娟. 基于卷积核哈希学习的高光谱图像分类[J]. 遥感学报, 2022, 26(4):722-738. |
XUE Zhaohui, ZHANG Yujuan. Supervised Hashing with RBF Kernel and Convolution for Hyperspectral Image Classification[J]. National Remote Sensing Bulletin, 2022, 26(4):722-738. | |
[14] | 熊敬伟, 潘继飞, 毕大平. 面向雷达行为识别的多尺度卷积注意力网络[J]. 西安电子科技大学学报, 2023, 50(6):62-74. |
XIONG Jingwei, PAN Jifei, BI Daping, et al. Multi-Scale Convolutional Attention Network for Radar Behavior Recognition[J]. Journal of Xidian University, 2023, 50(6):62-74. | |
[15] | QING Y, LIU W, FENG L, et al. Improved Transformer Net for Hyperspectral Image Classification[J]. Remote Sensing, 2021, 13(11):2216. |
[16] | AYAS S, TUNC-GORMUS E. SpectralSWIN:A Spectral-SWIN Transformer Network for Hyperspectral Image Classification[J]. International Journal of Remote Sensing, 2022, 43(11):4025-4044. |
[17] | CHEN Y, LI C, GHAMISI P, et al. Deep Fusion of Remote Sensing Data for Accurate Classification[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8):1253-1257. |
[18] | LI H, GHAMISI P, SOERGEL U, et al. Hyperspectral and LiDAR Fusion Using Deep Three-Stream Convolutional Neural Networks[J]. Remote Sensing, 2018, 10(10):1649. |
[19] | XU X, LI W, RAN Q, et al. Multisource Remote Sensing Data Classification Based on Convolutional Neural Network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(2):937-949. |
[20] | HANG R, LI Z, GHAMISI P, et al. Classification of Hyperspectral and LiDAR Data Using Coupled CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7):4939-4950. |
[21] | ZHAO X, TAO R, LI W, et al. Joint Classification of Hyperspectral and LiDAR Data Using Hierarchical Random Walk and Deep CNN Architecture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(10):7355-7370. |
[22] | MOHLA S, PANDE S, BANERJEE B, et al. Fusatnet:Dual Attention Based Spectrospatial Multimodal Fusion Network for Hyperspectral and Lidar Classification[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE, 2020:92-93. |
[23] | WANG X, FENG Y, SONG R, et al. Multi-Attentive Hierarchical Dense Fusion Net for Fusion Classification of Hyperspectral and LiDAR Data[J]. Information Fusion, 2022, 82:1-18. |
[24] | SHI X, LIN J, RAO Y, et al. Gated-Cross Aggregation Network for Hyperspectral and LiDAR Data Classification[C]// IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium. Piscataway:IEEE, 2023:1265-1268. |
[25] | HONG D, HAN Z, YAO J, et al. SpectralFormer:Rethinking Hyperspectral Image Classification with Transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:1-15. |
[26] |
XUE Z, TAN X, YU X, et al. Deep Hierarchical Vision Transformer for Hyperspectral and LiDAR Data Classification[J]. IEEE Transactions on Image Processing, 2022, 31:3095-3110.
doi: 10.1109/TIP.2022.3162964 pmid: 35404817 |
[1] | ZHANG Jing, WU Huixue, ZHANG Shaobo, LI Yunsong. Decoder-side enhanced image compression network under distributed strategy [J]. Journal of Xidian University, 2025, 52(1): 1-13. |
[2] | KONG Fanqiang, YU Shengjie, WANG Kun, FANG Xu, LV Zhijie. Hyperspectral image unmixing method based on convolutional recurrent neural networks [J]. Journal of Xidian University, 2025, 52(1): 142-151. |
[3] | WANG Chao, JIANG Xiaofeng, WANG Sumin. Research on the quantum effect traffic prediction algorithm oriented towards intuitive reasoning [J]. Journal of Xidian University, 2025, 52(1): 152-162. |
[4] | ZHAO Congjian, JIAO Yiyuan, LI Yanni. Overview of deep sentence-level entity relation extraction [J]. Journal of Xidian University, 2024, 51(6): 117-131. |
[5] | LI Zhuo, WANG Tongtong, LIU Kaihua. Research on the packet classification algorithm based on the intelligent rule storage matching model [J]. Journal of Xidian University, 2024, 51(6): 149-158. |
[6] | WU Xinting, HUANG Ying, NIU Baoning, GUAN Hu, LAN Fangpeng, LIU Jie. Image texture-guided iterative watermarking model [J]. Journal of Xidian University, 2024, 51(5): 110-121. |
[7] | MU Caihong, ZHANG Fugui, YAN Xiangrong, LIU Yi. Subspace andmemory bank for cross-domain few-shot classification of hyperspectral images [J]. Journal of Xidian University, 2024, 51(5): 82-96. |
[8] | ZHANG Mingjin, ZHOU Nan, LI Yunsong. Smooth interactive compression network for infrared small target detection [J]. Journal of Xidian University, 2024, 51(4): 1-14. |
[9] | GAO Dihui, SHENG Lijie, XU Xiaodong, MIAO Qiguang. Joint feature approach for image-text cross-modal retrieval [J]. Journal of Xidian University, 2024, 51(4): 128-138. |
[10] | ZHANG Yongquan, LI Zhibin, ZHANG Wenbo, SU Zhenzhen. Multi-source sensor box particle LMB filtering algorithm [J]. Journal of Xidian University, 2024, 51(4): 51-66. |
[11] | QI Liangang, ZHANG Yiquan, GUO Qiang, WANG Yani, KALIUZHNYI Mykola. Sparse array design for improving uniform degrees of freedom [J]. Journal of Xidian University, 2024, 51(4): 67-77. |
[12] | WAN Pengwu, HUI Xi, CHEN Dongrui, WU Bo. Modulation recognition based on the two-dimensional asynchronous in-phase quadrature histogram [J]. Journal of Xidian University, 2024, 51(4): 78-90. |
[13] | GUAN Yepeng, SU Guangyao, SHENG Yi. Time series prediction method based on the bidirectional long short-term memory network [J]. Journal of Xidian University, 2024, 51(3): 103-112. |
[14] | HE Wangpeng, HU Deshun, LI Cheng, ZHOU Yue, GUO Baolong. Siamese network tracking using template updating and trajectory prediction [J]. Journal of Xidian University, 2024, 51(3): 46-54. |
[15] | LIU Wei, WANG Mengyang, BAI Baoming. Efficient semantic communication method for bandwidth constrained scenarios [J]. Journal of Xidian University, 2024, 51(3): 9-18. |
|