[1] |
崔新雨, 伍杰, 周一青, 等. 空天地一体化融合组网的挑战与关键技术[J]. 西安电子科技大学学报, 2023, 50(1):1-11.
|
|
CUI Xinyu, WU Jie, ZHOU Yiqing, et al. Challenges of and Key Technologies for the Air-Space-Ground Integrated Network[J]. Journal of Xidian University, 2023, 50(1):1-11.
|
[2] |
张平, 陈岩, 吴超楠. 6G:新一代移动通信技术发展态势及展望[J]. 中国工程科学, 2023, 25(6):1-8.
doi: 10.15302/J-SSCAE-2023.06.001
|
|
ZHANG Ping, CHEN Yan, WU Chaonan. Six-Generation Mobile Communication:Development Trend and Outlook[J]. Strategic Study of CAE, 2023, 25(6):1-8.
|
[3] |
王友祥, 裴郁杉, 黄蓉, 等. 6G通感算一体化网络架构和关键技术研究[J]. 移动通信, 2023, 47(9):2-10.
|
|
WANG Yoiuxiang, PEI Yushan, HUANG Rong, et al. Network Architecture and Key Technologies for 6G Integrated Communication,Sensing and Computing[J]. Mobile Communications, 2023, 47(9):2-10.
|
[4] |
姜大洁, 袁雁南, 周通, 等. 面向6G的通感算融合服务、系统架构与关键技术[J]. 移动通信, 2023, 47(3):2-13.
|
|
JIANG Dajie, YUAN Yannan, ZHOU Tong, et al. Services,System Architecture and Key Technologies for 6G Integrated Communication,Sensing and Computing[J]. Mobile Communications, 2023, 47(3):2-13.
|
[5] |
尹浩, 黄宇红, 韩林丛, 等. 6G通信-感知-计算融合网络的思考[J]. 中国科学:信息科学, 2023, 53(9):1838-1842.
|
|
YIN Hao, HUANG Yuhong, HAN Lincong, et al. Thoughts on 6G Integrated Communication,Sensing and Computing Networks[J]. Scientia Sinica(Informationis), 2023, 53(9):1838-1842.
|
[6] |
张国华, 文军, 武明, 等. 面向马赛克战的通感算融合网络架构与模型设计[J]. 通信技术, 2023, 56(12):1364-1375.
|
|
ZHANG Guohua, WEN Jun, WU Ming, et al. Architecture and Model Design of Communication-Sensing-Computing Fusion Network for Mosaic Warfare[J]. Communications Technology, 2023, 56(12):1364-1375.
|
[7] |
姜大洁, 姚健, 李健之, 等. 通信感知一体化关键技术与挑战[J]. 移动通信, 2022, 46(5):69-77.
|
|
JIANG Dajie, YAO Jian, LI Jianzhi, et al. Key Technologies and Challenges for Integrated Sensing and Communication[J]. Mobile Communications, 2022, 46(5):69-77.
|
[8] |
周硕, 周一青, 张冲, 等. ResNet使能的OTFS联合信道估计和信号检测[J]. 西安电子科技大学学报, 2023, 50(3):19-30.
|
|
ZHOU Shuo, ZHOU Yiqing, ZHANG Chong, et al. ResNet Enabled Joint Channel Estimation and Signal Detection for OTFS[J]. Journal of Xidian University, 2023, 50(3):19-30.
|
[9] |
JEON H, NO J, SHIN D. A Low-Complexity SLM Scheme Using Additive Mapping Sequences for PAPR Reduction of OFDM Signals[J]. IEEE Transactions on Broadcasting, 2011, 57(4):866-875.
|
[10] |
GOPI S, KALYANI S. An Optimized SLM for PAPR Reduction in Non-Coherent OFDM-IM[J]. IEEE Wireless Communications Letters, 2020, 9(7):967-971.
|
[11] |
YANG L, SOO K, LI S, et al. PAPR Reduction Using Low Complexity PTS to Construct of OFDM Signals without Side Information[J]. IEEE Transactions on Broadcasting, 2011, 57(2):284-290.
|
[12] |
CHEN H, CHUNG K. A Low Complexity PTS Technique Using Minimal Trellis in OFDM Systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1):817-821.
|
[13] |
SAYYARI R, POURROSTAM J, AHMADI H. A Low Complexity PTS-Based PAPR Reduction Method for the Downlink of OFDM-NOMA Systems[C]// 2022 IEEE Wireless Communications and Networking Conference(WCNC 2022). Piscataway:IEEE, 2022:1719-1724.
|
[14] |
LIB, HU L, YANG F, et al. Tone Reservation Ratio Optimization for PAPR Reduction in OFDM Systems[C]// 2018 IEEE Wireless Communications and Networking Conference(WCNC 2018). Piscataway:IEEE, 2018:1-6.
|
[15] |
EL HASSAN M, CRUSSIèRE M, HéLARD J, et al. EVM Closed-Form Expression for OFDM Signals with Tone Reservation-Based PAPR Reduction[J]. IEEE Transactions on Wireless Communications, 2020, 19(4):2352-2366.
|
[16] |
TSAIY, DENG S, CHEN K, et al. Turbo Coded OFDM for Reducing PAPR and Error Rates[J]. IEEE Transactions on Wireless Communications, 2008, 7(1):84-89.
|
[17] |
ZHOU Y, JIANG T, HUANG C, et al. Peak-to-Average Power Ratio Reduction for OFDM/OQAM Signals via Alternative-Signal Method[J]. IEEE Transactions on Vehicular Technology, 2014, 63(1):494-499.
|
[18] |
SHU S, QU D, LI L, et al. Invertible Subset QC-LDPC Codes for PAPR Reduction of OFDM Signals[J]. IEEE Transactions on Broadcasting, 2015, 61(2):290-298.
|
[19] |
ARMSTRONG J. Peak-to-Average Power Reduction for OFDM by Repeated Clipping and Frequency Domainfiltering[J]. Electronic Letters, 2002, 38(5):246-247.
|
[20] |
WANG X, TJHUNG T, NG C. Reduction of Peak-to-Average Power Ratio of OFDM System Using a Companding Technique[J]. IEEE Transactions on Broadcasting, 1999, 45(3):303-307.
|
[21] |
HU M, LI Y, WANG W, et al. A Piecewise Linear Companding Transform for PAPR Reduction of OFDM Signals with Companding Distortion Mitigation[J]. IEEE Transactions on Broadcasting, 2014, 60(3):532-539.
|
[22] |
XING Z, LIU K, HUANG K, et al. Novel PAPR Reduction Scheme Based on Continuous Nonlinear Piecewise Companding Transform for OFDM Systems[J]. China Communications, 2020, 17(9):177-192.
|
[23] |
黄开元. 基于压扩变换的OFDM系统PAPR抑制技术研究[D]. 北京: 北京邮电大学, 2022.
|
[24] |
WANG Y, WANG L, GE J, et al. PAPR Reduction in OFDM Systems via Nonlinear Companding Transform[C]// 2012 8th International Conference on Wireless Communications,Networking and Mobile Computing.Piscataway:IEEE 2012:1-4.
|
[25] |
LIU K, WANG L, LIU Y. A New Nonlinear Companding Algorithm Based on Tangent Linearization Processing for PAPR Reduction in OFDM Systems[J]. China Communications, 2020, 17(8):133-146.
|
[26] |
XING Z, LIU K, TANG B, et al. Novel PAPR Reduction Scheme Based on Piecewise Nonlinear Companding Transform in OFDM Systems. IEEE Communications Letters, 2020, 24(8):1757-1761.
|
[27] |
ZHANG Y, HOU J, WANG L, et al. On the Design of Companding-Based Scheme for PAPR Reduction in OFDM Systems[J]. IEEE Transactions on Broadcasting, 2024, 70(1):347-356.
|
[28] |
DARDARI D, TRALLI V, VACCARI A. A Theoretical Characterization of Nonlinear Distortion Effects in OFDM Systems[J]. IEEE Transactions on Communications, 2000, 48(10):1755-1764.
|
[29] |
王雷博. OFDM系统下抑制峰均比的压扩算法研究[D]. 西安: 长安大学, 2023.
|
[30] |
STURM C, WIESBECK W. Waveform Design and Signal Processing Aspects for Fusion of Wireless Communications and Radar Sensing[J]. Proceedings of the IEEE, 2011, 99(7):1236-1259.
|