Journal of Xidian University ›› 2025, Vol. 52 ›› Issue (1): 196-214.doi: 10.19665/j.issn1001-2400.20241001
• Computer Science and Technology & Cyberspace Security • Previous Articles
LI Linke1(), CHEN Jie1,2(
), LIU Jun3(
)
Received:
2024-05-24
Online:
2024-10-15
Published:
2024-10-15
Contact:
CHEN Jie
E-mail:lilinke0000@126.com;jchen@mail.xidian.edu.cn;jliu6@snnu.edu.cn
CLC Number:
LI Linke, CHEN Jie, LIU Jun. Improved schemes and applications of the neural network differential distinguisher[J].Journal of Xidian University, 2025, 52(1): 196-214.
"
加密轮数 | 输入差分 | 精度 | 真阳性率 | 真阴性率 |
---|---|---|---|---|
6 | 0x0000/0001 | 0.999 0 | 1.000 0 | 0.998 0 |
6 | 0x0040/0000 | 0.981 1 | 0.999 3 | 0.962 9 |
7 | 0x0000/0001 | 0.980 8 | 0.999 4 | 0.962 2 |
7 | 0x0040/0000 | 0.742 4 | 0.713 1 | 0.771 7 |
8 | 0x0000/0001 | 0.799 6 | 0.799 9 | 0.799 3 |
8 | 0x0040/0000 | 0.629 5 | 0.498 3 | 0.760 5 |
9 | 0x0000/0001 | 0.622 5 | 0.482 4 | 0.762 4 |
9 | 0x0040/0000 | 0.500 8 | 1.000 0 | 0.000 0 |
"
输入差分 | 精度 | 输入差分 | 精度 | 输入差分 | 精度 |
---|---|---|---|---|---|
0x8028/0100 | 0.514 | 0x0020/0104 | 0.551 | 0x0000/1080 | 0.548 |
0x5002/0100 | 0.533 | 0x0043/2000 | 0.534 | 0x0010/8420 | 0.555 |
0x1000/0010 | 0.552 | 0x0880/0404 | 0.554 | 0x0800/0010 | 0.560 |
0x1400/0104 | 0.532 | 0x4002/4200 | 0.536 | 0x2001/8400 | 0.537 |
0x0020/0200 | 0.503 | 0x0006/0000 | 0.531 | 0x4020/0001 | 0.534 |
0x0200/0022 | 0.535 | 0x0081/1000 | 0.546 | 0x0800/1100 | 0.547 |
0x0000/0002 | 0.513 | 0x0010/4000 | 0.552 | 0x0408/0102 | 0.559 |
0x0000/0500 | 0.547 | 0x0000/0010 | 0.525 | 0x0000/0080 | 0.553 |
0x0000/0001 | 0.507 | 0x0000/0020 | 0.548 | 0x0000/0008 | 0.537 |
0x0000/0200 | 0.545 | 0x0000/0040 | 0.570 | 0x2000/0400 | 0.551 |
"
加密轮数 | 输入数据格式 | 精度 | 真阳性率 | 真阴性率 |
---|---|---|---|---|
6 | I0 | 0.999 0 | 1.000 0 | 0.998 1 |
6 | I1 | 0.999 8 | 1.000 0 | 0.999 6 |
7 | I0 | 0.979 8 | 0.999 4 | 0.960 1 |
7 | I1 | 0.990 7 | 0.999 2 | 0.982 3 |
8 | I0 | 0.751 5 | 0.719 5 | 0.783 3 |
8 | I1 | 0.840 0 | 0.852 7 | 0.827 1 |
9 | I0 | 0.632 9 | 0.510 9 | 0.755 0 |
9 | I1 | 0.658 1 | 0.571 3 | 0.745 2 |
10 | I1 | 0.565 8 | 0.464 5 | 0.667 0 |
11 | I1 | 0.517 2 | 0.467 2 | 0.567 2 |
"
结果来源 | 输入差分 | 输入数据格式 | 神经网络模型 | 精度 |
---|---|---|---|---|
文中分析结果 | 0x0000/0040 | I0 | Attention-ResNets | 0.632 9 |
应用文献[ | 0x0000/0040 | I0 | ResNets | 0.619 8 |
文献[ | 0x0000/0080 | I0 | ResNets | 0.597 7 |
文献[ | 0x0000/0040 | I0 | SE-ResNeXt | 0.651 5 |
文献[ | 0x0000/0040 | I2 | SE-ResNet | 0.917 6 |
文献[ | PD | I3 | ResNets | 0.637 3 |
文中分析结果 | 0x0000/0040 | I1 | Attention-ResNets | 0.658 1 |
"
输入差分 | 精度 | 输入差分 | 精度 | 输入差分 | 精度 |
---|---|---|---|---|---|
0x0115/0000 | 0.508 | 0x0808/2002 | 0.520 | 0x0400/0000 | 0.526 |
0x4010/0104 | 0.532 | 0x0400/8800 | 0.551 | 0x8000/8020 | 0.535 |
0x0800/0410 | 0.531 | 0x0000/0002 | 0.556 | 0x0000/0400 | 0.552 |
0x0000/8002 | 0.521 | 0x2048/2000 | 0.539 | 0x0044/0100 | 0.545 |
0x8000/4011 | 0.508 | 0x0000/0020 | 0.525 | 0x0000/0001 | 0.570 |
0x4000/0000 | 0.518 | 0x0002/8008 | 0.556 | 0x0110/0000 | 0.542 |
0x0000/0040 | 0.545 | 0x0020/0400 | 0.536 | 0x0008/0000 | 0.554 |
0x0948/0000 | 0.555 | 0x0000/0004 | 0.561 | 0x0000/0100 | 0.558 |
0x0001/0000 | 0.549 | 0x0000/0080 | 0.549 | 0x0080/1000 | 0.539 |
0x0000/4000 | 0.562 | 0x0083/0000 | 0.548 | 0x0002/0000 | 0.547 |
"
加密轮数 | 输入数据格式 | 精度 | 真阳性率 | 真阴性率 |
---|---|---|---|---|
6 | I0 | 0.999 0 | 1.000 0 | 0.998 1 |
6 | I1 | 0.999 8 | 1.000 0 | 0.999 7 |
7 | I0 | 0.975 7 | 0.996 4 | 0.954 9 |
7 | I1 | 0.991 6 | 0.999 6 | 0.983 5 |
8 | I0 | 0.881 1 | 0.931 1 | 0.831 3 |
8 | I1 | 0.902 6 | 0.942 6 | 0.862 4 |
9 | I0 | 0.679 1 | 0.689 9 | 0.668 2 |
9 | I1 | 0.707 8 | 0.707 1 | 0.708 5 |
10 | I0 | 0.544 8 | 0.524 7 | 0.564 9 |
10 | I1 | 0.569 9 | 0.560 7 | 0.579 0 |
11 | I1 | 0.516 4 | 0.500 3 | 0.532 5 |
"
结果来源 | 输入差分 | 输入数据格式 | 神经网络模型 | 精度 |
---|---|---|---|---|
文中分析结果 | 0x0000/0001 | I0 | Attention-ResNets | 0.679 1 |
应用文献[12]网络结构分析结果 | 0x0000/0001 | I0 | ResNets | 0.676 5 |
文献[28]分析结果 | 0x0000/0040 | I2 | SE-ResNet | 0.995 2 |
文献[34]分析结果 | 0x0000/0002 | I0 | ResNets | 0.676 2 |
文献[35]第3节分析结果 | 0x0000/0040 | I4 | Inception-Nets | 0.659 0 |
文中分析结果 | 0x0000/0001 | I1 | Attention-ResNets | 0.707 8 |
"
输入差分 | 精度 | 输入差分 | 精度 | 输入差分 | 精度 |
---|---|---|---|---|---|
0x0801/0002 | 0.515 | 0x0400/0108 | 0.517 | 0x0028/1000 | 0.539 |
0x0800/0000 | 0.533 | 0x0000/0001 | 0.542 | 0x0004/0000 | 0.549 |
0x1000/0800 | 0.532 | 0x2004/0000 | 0.519 | 0x0000/4000 | 0.548 |
0x0028/0010 | 0.541 | 0x0000/0080 | 0.557 | 0x0002/0000 | 0.531 |
0x0000/0400 | 0.538 | 0x0000/0400 | 0.544 | 0x8000/0000 | 0.547 |
0x0000/0080 | 0.552 | 0x0000/0018 | 0.537 | 0x0040/0000 | 0.570 |
0x0000/0040 | 0.522 | 0x4000/2400 | 0.514 | 0x0060/0020 | 0.528 |
0x0010/0000 | 0.542 | 0x0140/0002 | 0.553 | 0x0000/0018 | 0.537 |
0x0040/4400 | 0.566 | 0x0020/0008 | 0.559 | 0x0030/0400 | 0.543 |
0x2000/0000 | 0.523 | 0x0008/0008 | 0.530 | 0x0400/0000 | 0.517 |
[1] | 樊婷, 冯伟, 韦永壮. 一种大状态轻量级密码S盒的设计与分析[J]. 西安电子科技大学学报, 2023, 50(4):170-179. |
FAN Ting, FENG Wei, WEI Yongzhuang. The Design and Cryptanalysis of Large State Lightweight Cryptographic S-Box[J]. Journal of Xidian University, 2023, 50(4):170-179. | |
[2] | 郑雅菲, 吴文玲. LBlock 算法的改进中间相遇攻击[J]. 计算机学报, 2017, 40(5):1080-1091. |
ZHENG Yafei, WU Wenling. Improved Meet-In-The-Middle Attack of LBlock Cipher[J]. Chinese Journal of Computers, 2017, 40(5):1080-1091. | |
[3] | RAJAN R, ROY R K, SEN D, et al. Deep Learning-Based Differential Distinguisher for Lightweight Cipher GIFT-COFB[C]//Proceedings of the Conference on Machine Intelligence and Smart Systems. Heidelberg:Springer, 2022:397-406. |
[4] | XU H, HAO C, XU Z, et al. Linear Cryptanalysis of Lightweight Block Cipher WARP[C]// Proceedings of the 17th International Conference on Provable Security(ProvSec 2023).Heidelberg:Springer, 2023:83-90. |
[5] | SAJWAN A, MISHRA G. Comparative Analysis of ResNet and DenseNet for Differential Cryptanalysis of SPECK 32/64 Lightweight Block Cipher[C]//Proceedings of the International Conference on Cryptology and Network Security with Machine Learning. Heidelberg:Springer, 2023:495-504. |
[6] | 杨小雪, 陈杰. 几类密码算法的神经网络差分区分器的改进[J]. 西安电子科技大学学报, 2024, 51(1):210-222. |
YANG Xiaoxue, CHEN Jie. Improvement of the Neural Distinguishers of Several Ciphers[J]. Journal of Xidian University, 2024, 51(1):210-222. | |
[7] | RIVEST R L. Cryptography and Machine Learning[C]//Proceedings of the Internaional Conference on the Theory and Application of Cryptology and Information Security. Heidelberg:Springer, 1991:427-439. |
[8] | BAFGHI A G, SAFABAKHSH R, SADEGHIYAN B. Finding the Differential Characteristics of Block Ciphers with Neural Networks-Science Direct[J]. Information Sciences, 2008, 178(15):3118-3132. |
[9] | ALANI M M. Neuro-Cryptanalysis of DES and Triple-DES[C]//Proceedings of the International Conference on Neural Information Processing. Heidelberg:Springer, 2012:637-646. |
[10] | DANZIGER M, HENRIQUES M. Improved Cryptanalysis Combining Differential and Artificial Neural Network Schemes[C]//Proceedings of the 2014 International Telecommunications Symposium(ITS). Piscataway:IEEE, 2014:1-5. |
[11] | HU X, ZHAO Y. Research on Plaintext Restoration of AES Based on Neural Network[J]. Security and Communication Networks, 2018, 2018(6868506):1-9. |
[12] | GOHR A. Improving Attacks on Round-Reduced Speck32/64 Using Deep Learning[C]//Proceedings of the 39th Annual Internaional Cryptology Conference. Heidelberg:Springer, 2019:150-179. |
[13] | BAKSI A, BREIER J, CHEN Y, et al. Machine Learning Assisted Differential Distinguishers for Lightweight Ciphers[C]//Proceedings of the Design,Automation & Test in Europe Conference & Exhibition(DATE). Piscataway:IEEE, 2021:176-181. |
[14] | BENAMIRA A, GERAULT D, PEYRIN T, et al. A Deeper Look at Machine Learning-Based Cryptanalysis[C]//Proceedings of the 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Heidelberg:Springer, 2021:805-835. |
[15] | PAL D, MANDAL U, CHAUDHURY M, et al. A Deep Neural Differential Distinguisher for ARX Based Block Cipher(2022)[R/OL].[2022-09-10]. https://eprint.iacr.org/2022/1195. |
[16] | BAO Z, LU J, YAO Y, et al. More Insight on Deep Learning-Aided Cryptanalysis[C]//Proceedings of the 29th International Conference on the Theory and Application of Cryptology and Information Security. Heidelberg:Springer, 2023:436-467. |
[17] | ZHENG W, ZHANG L, WANG Z. Theoretical Explanation and Improvement of Deep Learning-Aided Cryptanalysis(2024)[R/OL].[2024-02-26]. https://eprint.iacr.org/2024/322. |
[18] | BIHAM E, SHAMIR A. Differential Cryptanalysis of DES-Like Cryptosystems[J]. Journal of Cryptology, 1991, 4(1):3-72. |
[19] | HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway:IEEE, 2016:770-778. |
[20] | ZHANG L, WANG Z, WANG B. Improving Differential-Neural Cryptanalysis(2022)[R/OL].[2022-02-20]. https://eprint.iacr.org/2022/183. |
[21] | KIM H, LIM S, KANG Y, et al. Deep-Learning-Based Cryptanalysis of Lightweight Block Ciphers Revisited[J]. Entropy, 2023, 25(7):986. |
[22] | HOU Z, REN J, CHEN S. Improve Neural Distinguishers of SIMON and SPECK[J]. Security and Communication Networks, 2021, 2021(9288229):1-11. |
[23] | CHEN Y, SHEN Y, YU H, et al. A New Neural Distinguisher Considering Features Derived from Multiple Ciphertext Pairs[J]. The Computer Journal, 2023, 66(6):1419-1433. |
[24] | BAHDANAU D, CHO K, BENGIO Y. Neural Machine Translation by Jointly Learning to Align and Translate(2014)[R/OL].[2014-09-04]. https://arxiv.org/pdf/1409.0473v2.pdf. |
[25] | BAO Z, GUO J, LIU M, et al. Enhancing Differential-Neural Cryptanalysis[C]//Proceedings of the 28th International Conference on the Theory and Application of Cryptology and Information Security. Heidelberg:Springer, 2022:318-347. |
[26] | DENG H, CAO X, CHENG Y. Attention in Differential Cryptanalysis on Lightweight Block Cipher SPECK[C]//Proceedings of the 20th Annual International Conference on Privacy,Security and Trust(PST). Piscataway:IEEE, 2023:1-9. |
[27] | BEAULIEU R, SHORS D, SMITH J, et al. The SIMON and SPECK Families of Lightweight Block Ciphers(2013)[R/OL].[2013-06-20]. https://eprint.iacr.org/2013/404. |
[28] | LU J, LIU G, SUN B, et al. Improved(Related-Key) Differential-Based Neural Distinguishers for SIMON and SIMECK Block Ciphers(2022)[R/OL].[2022-12-30]. https://eprint.iacr.org/2022/030. |
[29] | HOU Z, REN J, CHEN S. Cryptanalysis of Round-Reduced SIMON32 Based on Deep Learning(2021)[R/OL].[2021-03-18]. https://eprint.iacr.org/2021/362. |
[30] | KÖLBL S, LEANDER G, TIESSEN T. Observations on the SIMON Block Cipher Family[C]//Proceedings of the 35th Annual International Cryptology Conference. Heidelberg:Springer, 2015:161-185. |
[31] | BEIERLE C. Pen and Paper Arguments for SIMON and SIMON-Like Designs[C]//Proceedings of the 10th International Conference on Security and Cryptography for Networks. Heidelberg:Springer, 2016:431-446. |
[32] | SU H, ZHU X, MING D. Polytopic Attack on Round-Reduced Simon32/64 Using Deep Learning[C]//Proceedings of the 16th International Conference on Information Security and Cryptology. Heidelberg:Springer, 2020:3-20. |
[33] | YANG G, ZHU B, SUDER V, et al. The Simeck Family of Lightweight Block Ciphers[C]//Proceedings of the 17th International Conference on Cryptographic Hardware and Embedded Systems. Berlin:Springer, 2015:307-329. |
[34] | LYU L, TU Y, ZHANG Y. Improving the Deep-Learning-Based Differential Distinguisher and Applications to Simeck[C]//Proceedings of the 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design(CSCWD). Piscataway:IEEE, 2022:465-470. |
[35] | ZHANG L, LU J, WANG Z, et al. Improved Differential-Neural Cryptanalysis for Round-Reduced SIMECK32/64[J]. Frontiers of Computer Science,2023, 17(2023):1-22. |
[36] | BIHAM E, CHEN R. Near-Collisions of SHA-0[C]//Proceedings of the 24rd Annual International Cryptology Conference. Heidelberg:Springer, 2004:290-305. |
[1] | QU Jiahui, HE Jie, DONG Wenqian, LI Yunsong, ZHANG Tongzhen, YANG Yufei. Change detection method based on multi-scale and multi-resolution information fusion [J]. Journal of Xidian University, 2025, 52(1): 105-116. |
[2] | KONG Fanqiang, YU Shengjie, WANG Kun, FANG Xu, LV Zhijie. Hyperspectral image unmixing method based on convolutional recurrent neural networks [J]. Journal of Xidian University, 2025, 52(1): 142-151. |
[3] | WANG Danyang, PIAO Chunying, LIU Qi, GUAN Lei, LI Zan. CTS features based electromagnetic interference identification at radio observatory site [J]. Journal of Xidian University, 2025, 52(1): 80-93. |
[4] | TANG Shuyuan, ZHOU Yiqing, LI Jintao, LIU Chang, SHI Jinglin. Dual attention pedestrian detector for occlusion scenario based on feature calibration [J]. Journal of Xidian University, 2024, 51(6): 25-39. |
[5] | WANG Xiaopeng, SHI Huan. Fall detection algorithm based on the improved YOLOv8 combined with key points [J]. Journal of Xidian University, 2024, 51(5): 149-164. |
[6] | CHEN Kejia, ZHANG Yupeng, LIN Hongxi. Aspect-based sentiment analysis of syntactic perception and knowledge enhancement [J]. Journal of Xidian University, 2024, 51(5): 165-178. |
[7] | YANG Zelin, DONG Lihua, ZENG Yong. Cube attack on round-reduced Enhanced-Bivium [J]. Journal of Xidian University, 2024, 51(5): 179-188. |
[8] | WANG Yulai, LIAO Xiaomin, HE Haiguang, YE Guojun. Knowledge graph assisted spectrum resource optimization algorithm for UAVs [J]. Journal of Xidian University, 2024, 51(5): 58-70. |
[9] | LIANG Liming, DONG Xin, LEI Kun, XIA Yuchen, WU Jian. Retinal image quality grading for fused attention spectrum non-local blocks [J]. Journal of Xidian University, 2024, 51(4): 102-113. |
[10] | LI Xiaohan, YANG Yanbo, ZHANG Jiawei, LI Baoshan, MA Jianfeng. Graph neural network vulnerability detection for ethernet smart contracts [J]. Journal of Xidian University, 2024, 51(4): 139-150. |
[11] | ZHANG Xiaohong, XIANG Shijun, HUANG Hongbin. Hiding images in audio based on invertible neural networks [J]. Journal of Xidian University, 2024, 51(4): 226-238. |
[12] | GUAN Yepeng, SU Guangyao, SHENG Yi. Time series prediction method based on the bidirectional long short-term memory network [J]. Journal of Xidian University, 2024, 51(3): 103-112. |
[13] | XIA Yilan, WANG Xiumei, CHENG Peitao. Texture-aware video inpainting algorithm based on the multi-attention mechanism [J]. Journal of Xidian University, 2024, 51(3): 136-146. |
[14] | GONG Junyang, FU Weihong, FANG Houzhang. Research on lightweight and feature enhancement of SAR image ship targets detection [J]. Journal of Xidian University, 2024, 51(2): 96-106. |
[15] | DING Xinmiao, WANG Jiaxing, GUO Wen. Three-dimensional attention-enhanced algorithm for violence scene detection [J]. Journal of Xidian University, 2024, 51(1): 114-124. |
|