[1] |
蔡明娇, 蒋俊正, 蔡万源, 等. 张量分解和自适应图全变分的高光谱图像去噪[J]. 西安电子科技大学学报, 2024, 51(2):157-169.
|
|
CAI Mingjiao, JIANG Junzheng, CAI Wanyuan, et al. Hyperspectral Image Denoising Based on Tensor Decomposition and Adaptive Weight Graph Total Variation[J]. Journal of Xidian University, 2024, 51(2):157-169.
|
[2] |
DENG C, CHEN Y, ZHANG S, et al. Robust Dual Spatial Weighted Sparse Unmixing for Remotely Sensed Hyperspectral Imagery[J]. Remote Sensing, 2023, 15(16):4056.
|
[3] |
DUAN Y, XU X, LI T, et al. UnDAT:Double-Aware Transformer for Hyperspectral Unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5522012,1-12.
|
[4] |
REN L, HONG D, GAO L, et al. Orthogonal Subspace Unmixing to Address Spectral Variability for Hyperspectral Image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5501713,1-13.
|
[5] |
CELIK B. QLSU(QGIS Linear Spectral Unmixing) Plugin:An Open Source Linear Spectral Unmixing Tool for Hyperspectral & Multispectral Remote Sensing Imagery[J]. Environmental Modelling & Software, 2023, 168:105782.
|
[6] |
FENG X R, LI H C, WANG R, et al. Hyperspectral Unmixing Based on Nonnegative Matrix Factorization:A Comprehensive Review[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15:4414-4436.
|
[7] |
LI J, AGATHOS A, ZAHARIE D, et al. Minimum Volume Simplex Analysis:A Fast Algorithm for Linear Hyperspectral Unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9):5067-5082.
|
[8] |
FANG Y, WANG Y, XU L, et al. BCUN:Bayesian Fully Convolutional Neural Network for Hyperspectral Spectral Unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5523714,1-14.
|
[9] |
CUI C, WANG X, WANG S, et al. Unrolling Nonnegative Matrix Factorization with Group Sparsity for Blind Hyperspectral Unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-12.
|
[10] |
IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A. Sparse Unmixing of Hyperspectral Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6):2014-2039.
|
[11] |
CHEN B, LOU Y, BERTOZZI A L, et al. Graph-Based Active Learning for Nearly Blind Hyperspectral Unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5523716,1-16.
|
[12] |
RASTI B, HONG D, HANG R, et al. Feature Extraction for Hyperspectral Imagery:The Evolution from Shallow to Deep:Overview and Toolbox[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(4):60-88.
|
[13] |
苏远超, 许若晴, 高连如, 等. 基于深度学习的高光谱遥感图像混合像元分解研究综述[J]. 遥感学报, 2024, 28(1):1-19.
|
|
SU Yuanchao, XU Ruoqing, GAO Lianru, et al. Development of Deep Learning-Based Hyperspectral Remote Sensing Image Unmixing[J]. National Remote Sensing Bulletin, 2024, 28(1):1-19.
|
[14] |
CHEN J, ZHAO M, WANG X, et al. Integration of Physics-Based and Data-Driven Models for Hyperspectral Image Unmixing:A Summary of Current Methods[J]. IEEE Signal Processing Magazine, 2023, 40(2):61-74.
|
[15] |
SU Y, LI J, PLAZA A, et al. Daen:Deep Autoencoder Networks for Hyperspectral Unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):4309-4321.
|
[16] |
PALSSON B, SIGURDSSON J, SVEINSSON J R, et al. Hyperspectral Unmixing Using a Neural Network Autoencoder[J]. IEEE Access, 2018, 6:25646-25656.
|
[17] |
GAO L, HAN Z, HONG D, et al. Cycu-Net:Cycle-Consistency Unmixing Network by Learning Cascaded Autoencoders[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:1-14.
|
[18] |
SU Y, ZHU Z, GAO L, et al. DAAN:A Deep Autoencoder-Based Augmented Network for Blind Multilinear Hyperspectral Unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62:1-15.
|
[19] |
管业鹏, 苏光耀, 盛怡. 双向长短期记忆网络的时间序列预测方法[J]. 西安电子科技大学学报, 2024, 51(3):103-112.
|
|
GUAN Yepeng, SU Guangyao, SHENG Yi. Time Series Prediction Method Based on the Bidirectional Long Short-Term Memory Network[J]. Journal of Xidian University, 2024, 51(3):103-112.
|
[20] |
ZHAO M, YAN L, CHEN J. LSTM-DNN Based Autoencoder Network for Nonlinear Hyperspectral Image Unmixing[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(2):295-309.
|
[21] |
LIU Y, LI J, PLAZAA, et al. Spectral Partitioning for Hyperspectral Remote Sensing Image Classification[C]//2014 IEEE Geoscience and Remote Sensing Symposium. Piscataway:IEEE, 2014:3434-3437.
|
[22] |
CAVALLI R M. Spatial Validation of Spectral Unmixing Results:A Systematic Review[J]. Remote Sensing, 2023, 15(11):2822.
|
[23] |
ELKHOLY M M, MOSTAFA M, EBIED H M, et al. Hyperspectral Unmixing Using Deep Convolutional Autoencoder[J]. International Journal of Remote Sensing, 2020, 41(12):4799-4819.
|
[24] |
PALSSON B, ULFARSSON M O, SVEINSSON J R. Convolutional Autoencoder for Spectral-Spatial Hyperspectral Unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(1):535-549.
|
[25] |
OZKAN S, KAYA B, AKAR G B. Endnet:Sparse Autoencoder Network for Endmember Extraction and Hyperspectral Unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(1):482-496.
|
[26] |
YU Y, MA Y, MEI X, et al. Multi-Stage Convolutional Autoencoder Network for Hyperspectral Unmixing[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 113:102981.
|
[27] |
CLARK R N, SWAYZE G A, WISE R, et al. Usgs Digital Spectral Library Splib06a[R]. U.S. Geological Survey,Open File Report, 2003:3395.
|
[28] |
DAVIS C O, KAVANAUGH M, LETELIERR, et al. Spatial and Spectral Resolution Considerations for Imaging Coastal Waters[C]// Coastal Ocean Remote Sensing.Washington,D.C.:SPIE, 2007, 6680:196-207.
|