[1] |
HUANG S, LIN Y, XU H, et al. Development of a Nonlinear Thermal Equivalent Circuit Model for the Digital Valve with Integrated Multiple Coils[J]. Journal of Mechanical Science and Technology, 2024, 38:5097-5111.
|
[2] |
CUI W Y, GAO X X, ZHANG J J, et al. Power-Modulated Reconfigurable Nonlinear Plasmonic Devices without DC Power Supply and Feed Circuit[J]. NPJ Nanophotonics, 2024, 1:1-8.
|
[3] |
KIM I. A Short-Circuit Analysis Algorithm Capable of Analyzing Unbalanced Loads and Phase Shifts Through Transformers Using the Newton-Raphson Power-Flow Calculation,Sequence,and Superposition Methods[J]. International Transactions on Electrical Energy Systems, 2021, 31(4):1-17.
|
[4] |
ADAK S, CANGI H, YILMAZ A S, et al. Development Software Program for Extraction of Photovoltaic Cell Equivalent Circuit Model Parameters based on the Newton-Raphson Method[J]. Electronics Newsweekly, 2023, 22:413-422.
|
[5] |
贾鼎成, 王磊磊, 高薇. 三维集成电路中内存的经时击穿分析与检测[J]. 西安电子科技大学学报, 2019, 46(4):182-189.
|
|
JIA Dingcheng, WANG Leilei, GAO Wei. Analysis and Detection of TDDB Degradation for DRAM in 3D-ICs[J]. Journal of Xidian University, 2019, 46(4):182-189.
|
[6] |
TOLDINAS J, VENKAUSKAS A, DAMAEVIIUS R, et al. A Novel Approach for Network Intrusion Detection Using Multistage Deep Learning Image Recognition[J]. Electronics, 2021, 10(15):1-21.
|
[7] |
SHAFIQ M, GU Z. Deep Residual Learning for Image Recognition:A Survey[J]. Applied Sciences-Basel, 2022, 12(18):1-43.
|
[8] |
谢树宾. 基于深度学习的功率放大器多状态泛化模型研究[D]. 北京: 北京邮电大学, 2023.
|
[9] |
CERNY D, DOBES J. Deep Learning Neural Network Algorithm for Computation of SPICE Transient Simulation of Nonlinear Time Dependent Circuits[J]. Electronics, 2022, 11(1):1-12.
|
[10] |
SHEN Q W, MA Y W. Circuit Teaching Simulation Platform Technology Based on Deep Learning Optimization[C]// 2022 International Conference on Cyber Security,Artificial Intelligence,and Digital Economy(CSAIDE 2022).Yangzhou:CSAIDE, 2022:1-6.
|
[11] |
GUAN Z M, ZHAO P, WANG X B, et al. Modeling Radio-Frequency Devices Based on Deep Learning Technique[J]. Electronics, 2021, 10(14):1-13.
|
[12] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-Informed Neural Networks:A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations[J]. Journal of Computational Physics, 2019, 378:686-707.
|
[13] |
FATIMA S. Simulation Software Similar to SPICE[D]. Dekalb: Northern Illinois University, 2017.
|
[14] |
BALDAN M, BARBA P D, LOWTHER D A. Physics-Informed Neural Networks for Inverse Electromagnetic Problems[J]. IEEE Transactions on Magnetics, 2023, 59(5):1-5.
|
[15] |
WU Z K, JIANG L J, SUN S, et al. A Hard Constraint and Domain-Decomposition- Based Physics-Informed Neural Network Framework for Nonhomogeneous Transient Thermal Analysis[J]. IEEE Transactions on Components,Packaging and Manufacturing Technology, 2024, 14(7):1215-1226.
|
[16] |
HUANG X, ALKHALIFAH T. GaborPINN:Efficient Physics Informed Neural Networks Using Multiplicative Filtered Networks[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20:1-5.
|
[17] |
CHEN W T, TAN X, AN J H, et al. Analytical Investigation on Piezoelectric Shunting Circuit for Resonance Suppression of the Nonlinear Vibration System[J]. Nonlinear Dynamics, 2023, 111(8):7083-7103.
|
[18] |
WU X, JIN Z, NIU D, et al. An Adaptive Time-Step Control Method in Damped Pseudo-Transient Analysis for Solving Nonlinear DC Circuit Equations[J]. IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences, 2017, 100(2):619-628.
|
[19] |
FANG Z, ZHAN J Z. A Physics-Informed Neural Network Framework for PDEs on 3D Surfaces:Time Independent Problems[J]. IEEE Access, 2020, 8:26328-26335.
|
[20] |
金洲, 刘毅, 裴浩杰, 等. PETA-Gmin:求解非线性电路的动态延拓算法[J]. 西安电子科技大学学报, 2022, 49(4):184-192.
|
|
JIN Zhou, LIU Yi, PEI Haojie, et al. PETA-Gmin:Dynamic Continuation Algorithm for Solving Nonlinear Circuits[J]. Journal of Xidian University, 2022, 49(4):184-192.
|