[1]Courtois N, Meier W. Algebraic Attacks on Stream Ciphers with Linear Feedback[C]//Advances in Cryptology-EUROCRYPT 2003, Number 2656 in Lecture Notes in Computer Science. Berlin: Springer Verlag, 2003: 345-359.
[2]Carlet C, Dalai D, Gupta K, et al. Algebraic Immunity for Cryptographically Significant Boolean Functions: Analysis and Construction[J]. IEEE Trans on Information Theory, 2006, 52(7): 3105-3121.
[3]Armknecht F. Improving Fast Algebraic Attacks[C]//FSE 2004, Number 3017 in Lecture Notes in Computer Science. Berlin: Springer Verlag, 2004: 65-82.
[4]Braeken A, Lano J, Preneel B. Evaluating the Resistance of Filtersand Combiners Against Fast Algebraic Attacks[EB/OL]. [2008-12-20]. http://eprint.iacr.org, 2005/276
[5]Sun Bin, Qu Longjiang, Li Chao. New Cryptanalysi of Block Cipher with Low Algebraic Degree[C]//FSE 2009, Lecture Notes in Computer Science. Berlin: Springer Verlag, 2009: 183-195.
[6]Albrecht M, Cid C. Algebraic Techniques in Differential Cryptanalysi[C]//FSE 2009, Lecture Notes in Computer Science. Berlin: Springer Verlag, 2009: 196-210.
[7]陈杰, 胡予濮, 韦永壮. 一种快速构造降次函数的新算法[J]. 西安电子科技大学学报, 2005, 32(5): 790-793.
Chen Jie, Hu Yupu, Wei Yongzhuang. A New Algorithm for Constructing Depressed Functions[J].Journal of Xidian University, 2005, 32(5): 790-793.
[8]Qu L J, Li C, Feng K Q. A Note Symmetric Boolean Functions with Maximum Algebraic Immunity on Odd Number of Variables[J]. IEEE Trans on Information Theory, 2007, 53(8): 2908-2910.
[9]Dalai D K, Maitra S. Reducing the Number of Homogeneous Linear Equations in Finding Annihilators[C]//Sequences and Their Applications—SETA2006, LNCS, 4086. Heidelberg: Springer, 2006: 376-390.
[10]Armknecht F, Carlet C, Gaborit P, et al. Efficient Computation of Algebraic Immunity for Algebraic and Fast Algebraic Attacks[C]//The Proceedings of EUROCRYPT 2006, LNCS 3029. Berlin: Springer, 2006: 274-290.
[11]Armknecht F. On the Existence of Low-degree Equations for Algebraic Attacks[EB/OL]. [2008-12-20]. http://eprint.iacr.org, 2004/185.
|