joint diagonalization|least-squares criteria|QR factorization|blind source separation|algebraic cofactor
[1]Moreau E. A Generalization of Joint Diagonalization Criteria for Source Separation [J]. IEEE Trans on Signal Processing, 2001, 49(3): 530-541.
[2]Belouchrani A, Meraim K, Cardoso J F, et al. A Blind Source Separation Technique Using Second-order Statistics [J]. IEEE Trans on Signal Processing, 1997, 45(2): 434-444.
[3]Degerine S, Kane E. A Comparative Study of Approximate Joint Diagonalization Algorithms for Blind Source Separation in Presence of Additive Noise [J]. IEEE Trans on Signal Processing, 2007, 55(6): 3022-3031.
[4]张伟涛,楼顺天,张延良,具有等变化性的最小二乘盲信源分离方法 [J]. 西安电子科技大学学报,2008,35(6): 999-1002.
Zhang Weitao, Lou Shuntian, Zhang Yanliang. Adaptive Least-squares Method for Blind Source Separation with an Equivariant Property [J]. Journal of Xidian University, 2008, 35(6): 999-1002.
[5]Cardoso J F, Souloumiac A. Blind Beamforming for Non Gaussian Signals [J]. Proc Inst Elect Eng F, 1993, 140(6): 362-370.
[6]Yeredor A. Non-orthogonal Joint Diagonalization in the Least-squares Sense with Application in Blind Source Separation [J]. IEEE Trans on Signal Processing, 2002, 50(7): 1545-1553.
[7]Vollgraf R, Obermayer K. Quadratic Optimization for Simultaneous Matrix Diagonalization [J]. IEEE Trans on Signal Processing, 2006, 54(9): 3270-3278.
[8]Li X L, Zhang X D. Nonorthogonal Joint Diagonalization Free of Degenerate Solution [J]. IEEE Trans on Signal Processing, 2007, 55(5): 1803-1814.
[9]Pham D T. Joint Approximate Diagonalization of Positive Definite Hermitian Matrices [J]. SIAM J Matrix Anal Appl, 2001, 22(4): 1136-1152.
[10]Yeredor A. On Using Exact Joint Diagonalization for Noniterative Approximate Joint Diagonalization [J]. IEEE Signal Processing Letters, 2005, 12(9): 645-648. |