[1] Von Ahn L, Blum M, Langford J. Telling Humans and Computer Apart Automatically[J]. Communication of ACM, 2004, 47(2): 57-60.
[2] Mori G, Malik J. Recognizing Objects in Adversarial Clutter: Breaking a Visual CAPTCH[C]//IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2003: 134-141.
[3] Moy G, Jones N, Harkless C, et al. Distortion Estimation Techniques in Solving Visual CAPTCHAs[C]//IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2004: 1-6.
[4] Yan J, Ahmad A S E. A Low-cost Attack on a Microsoft CAPTCHA[C]//Proc of the ACM Conference of Computer and Communications Security. New York: ACM Press, 2008: 543-554.
[5] Chellapilla K, Simard P. Using Machine Learning to Break Visual Human Interaction Proofs[C]//Neural Information Processing Systems (NIPS). Cambridge: MIT Press, 2004: 265-272.
[6] Bursztein E, Martin M, Mitchell J C. Text-based CAPTCHA Strengths and Weaknesses [C]//Proc of the ACM Conference of Computer and Communications Security. Chicago: ACM Press, 2011: 125-137.
[7] 汪涛, 卢朝阳. 一种新的汽车牌照字符切分算法[J]. 西安电子科技大学学报, 2005, 32(6): 931-935.
Wang Tao, Lu Zhaoyang. A New Algorithm for the Character Segmentation of the License Plate [J]. Journal of Xidian University, 2005, 32(6): 931-935.
[8] 王立新, 刘彤宇, 李阳. SSDA匹配算法的研究及实现[J]. 光电技术应用, 2005, 20(3): 53-55.
Wang Lixin, Liu Tongyu, Li Yang, Research and Implementation of SSDA[J]. Electro-Optic Technology Application , 2005, 20(3): 53-55. |