[1] Kokshenev I, Braga A P. An Efficient Multi-objective Learning Algorithm for RBF Neural Network [J]. Neurocomputing, 2010, 73(16-18): 2799-2808.
[2] Depolli M, Trobec R, Filipc B. Asynchronous Master-Slave Parallelization of Differential Evolution for Multi-objective Optimization [J]. Evolutionary Computation, 2013, 21(2): 261-291.
[3] Liao H L, Wu Q H. Multi-objective Optimization by Learning Automata [J]. Journal of Global Optimization, 2013, 55(2): 459-487.
[4] Ishibuchi H, Tsukamoto N, Nojima Y. Evolutionary Many-objective Optimization: a Short Review [C]//IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2008: 2419-2426.
[5] Bader J, Zitzler E. HypE: an Algorithm for Fast Hypervolume-based Many-objective Optimization [J]. Evolutionary Computation, 2011, 19(1): 45-76.
[6] Friedrich T, Horoba C, Neumann, F. Multiplicative Approximations and the Hypervolume Indicator [C]//Proceedings of the 11th Annual Genetic and Evolutionary Computation Conference. New York: ACM, 2009: 571-578.
[7] Zitzler E, Künzli S. Indicator-based Selection in Multiobjective Search [C]//Lecture Notes in Computer Science: 3242. Berlin: Springer, 2004: 832-842.
[8] Ray T, Asafuddoula M D, Isaacs A. A Steady State Decomposition Based Quantum Algorithm for Many Objective Optimization [C]//IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2013: 2817-2824.
[9] Kokolo I, Hajime K, Shigenobu K. Failure of Pareto-based MOEAs: Does Nondominated Really Mean Near to Optimal? [C]//Proceedings of Congress on Evolutionary Computation. Piscataway: IEEE, 2001: 957-962.
[10] 马晶晶, 杨咚咚, 焦李成. 免疫非支配自适应粒子群多目标优化[J]. 西安电子科技大学学报, 2010, 37(5): 846-851.
Ma Jingjing, Yang Dongdong, Jiao Licheng. Immune Nondominated Adaptive Particle Swarm Multi-objective Optimization [J]. Journal of Xidian University, 2010, 37(5): 846-851.
[11] Sato H, Aguirre H E, Tanaka K. Controlling Dominance Area of Solutions and Its Impact on the Performance of mOEAs [C]//Lecture Notes in Computer Science: 4003. Heidelberg: Springer, 2007: 5-20.
[12] Deb K. Multi-objective Optimization Using Evolutionary Algorithms [M]. New Jersey: John Wiley & Sons, 2001.
[13] Deb K, Agrawal S, Pratap A, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-Ⅱ [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
[14] Coello C A, Cortés N C. Solving Multiobjective Optimization Problems Using an Artificial Immune System [J]. Genetic Programming and Evolvable Machines, 2005, 6(2): 163-190.
[15] Deb K, Thiele L, Laumanns M, et al. Scalable Multi-objective Optimization Test Problems [C]//Proceedings of Congress on Evolutionary Computation. Piscataway: IEEE, 2002: 825-830.
[16] Tan Yanyan, Jiao Yongchang, Li Hong, et al. MOEA/D+uniform Design: a New Version of MOEA/D for Optimization Problems with Manyobjectives [J]. Computers & Operations Research, 2013, 40(6):1648-1660. |