[1] 戎保, 芮筱亭, 王国平, 等. 多体系统动力学研究进展 [J]. 振动与冲击, 2011, 30(7): 178-187.
Rong Bao, Rui Xiaoting, Wang Guoping, et al. Developments of Studies on Multibody System Dynamics [J]. Journal of Vibration and Shock, 2011, 30(7): 178-187.
[2] Liu J Y, Hong J Z. Dynamics of Three-dimensional Beams Undergoing Large Overall Motion [J]. European Journal of Mechanics A/Solids, 2004, 23(6): 1051-1068.
[3] 吴胜宝, 章定国. 大范围运动刚体-柔性梁刚柔耦合动力学分析 [J]. 振动工程学报, 2011, 24(1): 1-7.
Wu Shengbao, Zhang Dingguo. Rigid-flexible Coupling Dynamic Analysis of Sub-flexible Beam with Large Overall Motion [J]. Journal of Vibration Engineering, 2011, 24(1): 1-7.
[4] 和兴锁, 邓峰岩, 王睿. 具有大范围运动和非线性变形的空间柔性梁的精确动力学建模 [J]. 物理学报, 2010, 59(3): 1428-1436.
He Xingsuo, Deng Fengyan, Wang Rui. Exact Dynamic Modeling of a Spatial Flexible Beam with Large Overall Motion and Nonlinear Deformation [J]. Acta Physica Sinica, 2010, 59(3): 1428-1436.
[5] 方建士, 章定国. 旋转悬臂梁的刚柔耦合动力学建模与频率分析[J]. 计算力学学报, 2012, 29(3): 333-339.
Fang Jianshi, Zhang Dingguo. Rigid-flexible Coupling Dynamic Modeling and Frequency Analysis of a Rotating Cantilever Beam[J]. Chinese Journal of Computational Mechanics, 2012, 29(3): 333-339.
[6] 杨辉, 洪嘉振, 余征跃. 刚柔耦合建模理论的实验验证[J]. 力学学报, 2003, 35(2): 253-256.
Yang Hui, Hong Jiazhen, Yu Zhengyue. Experiment Validation on Modeling Theory for Rigid-flexible Coupling Systems[J]. Acta Mechanica Sinica, 2003, 35(2): 253-256.
[7] 张海根, 何柏岩, 王树新, 等. 计及参数不确定性的柔性空间曲线梁动力学建模方法[J]. 天津大学学报(自然科学版), 2003, 36(1): 47-50.
Zhang Haigen, He Baiyan, Wang Shuxin, et al. Dynamic Model of Flexible Spatial Camber Beam with Uncertainty Parameters[J]. Journal of Tianjin University(Science and Technology), 2003, 36(1): 47-50.
[8] 赵宽, 陈建军, 曹鸿钧, 等. 随机参数旋转柔性梁运动功能可靠性分析[J]. 西安电子科技大学学报, 2013, 40(5): 178-184.
Zhao Kuan, Chen Jianjun, Cao Hongjun, et al. Motion Function Reliability Analysis of a Rotating Flexible Beam with Random Parameters [J]. Jornal of Xidian University, 2013, 40(5): 178-184.
[9] 刘智益, 王晓东, 康顺. 多元多项式混沌法在随机方腔流动模拟中的应用[J]. 工程热物理学报, 2012, 33(3): 409-423.
Liu Zhiyi, Wang Xiaodong, Kang Shun. Application of Multi-dimensional Polynomial Chaos on Numerical Simulations of Stochastic Cavity Flow [J]. Journal of Engineering Thermophysics, 2012, 33(3): 409-423.
[10] Sandu A, Sandu C, Ahmadian M, et al. Modeling Multibody Systems with Uncertainties. Part Ⅰ: Theoretical and Computational Aspects [J]. Multibody System Dynamics, 2006, 15: 369-391.
[11] Isukapalli S S, Roy A, Georgopoulos P. Stochastic Response Surface Methods (SRSM) for Uncertainty Propagation: Application to Environmental and Biological Systems [J]. Risk Analysis, 1998, 18(3): 351-363.
[12] Tatang M A, Pan W, Prinn R G, et al. An Efficient Method for Parametric Uncertainty Analysis of Numerical Geophysical Models [J]. Journal of Geophysical Research, 1997, 102(D18): 21925-21932.
[13] Stroud A H. Approximate Calculation of Multiple Integrals [M]. New York: Prentice-Hall, Englewood Cliffs, 1971.
[14] 韦东来, 崔振山, 陈军. 混沌多项式新求解及其在板料成形性容差预测中的应用[J]. 机械工程学报, 2009, 45(8): 261-265.
Wei Donglai, Cui Zhenshan, Chen Jun.New Solution for Polynomial Chaos Expansion and Application in Tolerance Prediction for Stamping Process [J]. Jounal of Mechanical Engineering, 2009, 45(8): 261-265.
[15] Wei D L, Cui Z S, Chen J. Robust Optimization Based on a Polynomial Expansion of Chaos Constructed with Integration Point Rules [J]. Mechanical Engineering Science, 2009, 223(5): 1263-1272. |