[1] HOWELL L L. Compliant Mechanisms[M]. New York: John Wiley & Sons, 2001.
[2] 勾燕洁, 陈贵敏, 贾建援. 柔顺五杆三稳态机构的设计方法[J]. 西安电子科技大学学报, 2015, 42(4): 57-62.
GOU Yanjie, CHEN Guimin, JIA Jianyuan. Design Approach for a Compliant Five-bar Tristable Mechanism[J]. Journal of Xidian University, 2015, 42(4): 57-62.
[3] HOWELL L L, MIDHA A. Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms[J]. Journal of Mechanical Design, 1996, 118(1): 121-125.
[4] 于靖军, 毕树生. 基于伪刚体模型法的全柔性机构位置分析[J]. 机械工程学报, 2002, 38(2): 75-78.
YU Jingjun, BI Shusheng. Kinematics Analysis of Compliant Mechanisms Using the Pseudo-rigid-body Model[J]. Journal of Mechanical Engineering, 2002, 38(2): 75-78.
[5] MENG Q L, LI Y M, XU J. A Novel Analytical Model for Flexure-based Proportion Compliant Mechanisms[J]. Precision Engineering, 2014, 38(3): 449-457.
[6] CHOI K B, LEE J J. Static Model for Flexure-based Compliant Mechanism Driven by Piezo Stacks[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008, 222(4): 703-709.
[7] VENANZI S, GIESEN P. A Novel Technique for Position Analysis of Planar Compliant Mechanisms[J]. Mechanism & Machine Theory, 2005, 40(11): 1224-1239.
[8] 王桂平, 王 衍, 任嘉辰. 图论算法理论、实现及应用[M]. 北京: 北京大学出版社, 2011.
[9] PARRISH B E, MICHAEL MCCARTHY J, EPPSTEIN D. Automated Generation of Linkage Loop Equations for Planar One Degree-of-freedom Linkages, Demonstrated up to 8-Bar[J]. Journal of Mechanisms and Robotics, 2015, 7(1): 011006.
[10] 杨廷力. 机械系统基本理论——结构学·运动学·动力学[M]. 北京: 机械工业出版社, 1996.
[11] 徐芝纶. 弹性力学简明教程[M]. 北京: 高等教育出版社, 2002.
[12] CHEN G M, LIU X Y, DU Y L. Elliptical-arc-fillet Flexure Hinges: Toward a Generalized Model for Commonly Used Flexure Hinges[J]. Journal of Mechanical Design, 2011, 133(8): 602-610. |