[1] |
SCHMIDT R O . Multiple Emitter Location and Signal Parameter Estimation[J]. IEEE Transactions on Antennas and Propagation, 1986,34(3):276-280.
|
[2] |
ROY R, KAILATH T . ESPRIT—Estimation of Signal Parameters via Rotational Invariance Techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989,37(7):984-995.
|
[3] |
MALIOUTOV D, CETIN M, WILLSKY A S . A Sparse Signal Reconstruction Perspective for Source Localization with Sensor Arrays[J]. IEEE Transactions on Signal Processing, 2005,53(8):3010-3022.
|
[4] |
WU X H, ZHU W P, YAN J , et al. Two Sparse-based Methods for Off-grid Direction-of-arrival Estimation[J]. Signal Processing, 2018,142:87-95.
|
[5] |
韦娟, 计永祥, 牛俊儒 . 一种新的稀疏重构的DOA估计算法[J]. 西安电子科技大学学报, 2018,45(5):19-24.
|
|
WEI Juan, JI Yongxiang, NIU Junru . Novel Algorithm for DOA Estimation Based on the Sparse Reconstruction[J]. Journal of Xidian University, 2018,45(5):19-24.
|
[6] |
DAI J S, SO H C . Sparse Bayesian Learning Approach for Outlier-resistant Direction-of-arrival Estimation[J]. IEEE Transactions on Signal Processing, 2018,66(3):744-756.
|
[7] |
ZOLTOWSKI M D, HAARDT M, MATHEWS C P . Closed-form 2-D Angle Estimation with Rectangular Arrays in Element Space or Beamspace via Unitary ESPRIT[J]. IEEE Transactions on Signal Processing, 1996,44(2):316-328.
|
[8] |
MATHEWS C P, ZOLTOWSKI M D . Eigenstructure Techniques for 2-D Angle Estimation with Uniform Circular Arrays[J]. IEEE Transactions on Signal Processing, 1994,42(9):2395-2407.
|
[9] |
ZOLTOWSKI M D, MATHEWS C P. Closed-form 2D Angle Estimation with Uniform Circular Array via Phase Mode Excitation and ESPRIT [C]// Conference Record of the 1993 Twenty-seventh Asilomar Conference on Signals, Systems and Computers. Los Alamitos: IEEE, 1993: 169-173.
|
[10] |
DONG Y Y, DONG C X, LIU W , et al. 2-D DOAEstimation for L-shaped Array with Array Aperture and Snapshots Extension Techniques[J]. IEEE Signal Processing Letters, 2017,24(4):495-499.
|
[11] |
WANG Q, YANG H, CHEN H , et al. A Low-complexity Method for Two-dimensional Direction-of-arrival Estimation Using an L-shaped Array[J]. Sensors, 2017,17(1):190-204.
|
[12] |
CHEN H, HOU C, LIU W , et al. Efficient Two-dimensional Direction-of-arrival Estimation for a Mixture of Circular and Noncircular Sources[J]. IEEE Sensors Journal, 2016,16(8):2527-2536.
|
[13] |
WU X H, ZHU W P, YAN J . A Fast Gridless Covariance Matrix Reconstruction Method for One-and Two-dimensional Direction-of-arrival Estimation[J]. IEEE Sensors Journal, 2017,17(15):4916-4927.
|
[14] |
TIAN X Y, LEI J, DU L . A Generalized 2-D DOA Estimation Method Based on Low-rank Matrix Reconstruction[J]. IEEE Access, 2018,6:17407-17414.
|
[15] |
QIAN T, TIAN J, ZHANG X. et al. Atomic Norm Method for DOA Estimation in Random Sampling Condition [C]//Proceedings of the 2016 CIE International Conference on Radar. Piscataway: IEEE, 2016: 8059530.
|
[16] |
ZHANG Y, ZHANG G, WANG X. Array Covariance Matrix-based Atomic Norm Minimization for Off-grid Coherent Direction-of-arrival Estimation [C]//Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2017: 3196-3200.
|
[17] |
MHATA K, HYDER M M . Grid-less T.V Minimization for DOA Estimation[J]. Signal Processing, 2017,132:155-164.
|
[18] |
YANG Z, XIE L . Enhancing Sparsity and Resolution via Reweighted Atomic Norm Minimization[J]. IEEE Transactions on Signal Processing, 2016,64(4):995-1006.
|
[19] |
YANG Z, XIE L . On Gridless Sparse Methods for Multi-snapshot Direction of Arrival Estimation[J]. Circuits, Systems, and Signal Processing, 2017,36(8):3370-3384.
|
[20] |
ZHANG Y W, HONG X, WANG Y. et al. Gridless SPICE Applied to Parameter Estimation of Underwater Acoustic Frequency Hopping Signals [C]//Proceedings of the 2016 IEEE/OES China Ocean Acoustics Symposium. Piscataway: IEEE, 2016: 7535747.
|
[21] |
YANG Z, LI J, STOICA P , et al . Sparse Methods for Direction-of-arrival Estimation[EB/OL]. [ 2018- 12- 11]. http://cn.arxiv.org/pdf/1609.09596v2.
|
[22] |
SAHNOUN S, USEVICH K, COMON P . Multidimensional ESPRIT for Damped and Undamped Signals: Algorithm, Computations, and Perturbation Analysis[J]. IEEE Transactions on Signal Processing, 2017,65(22):5897-5910.
|
[23] |
ZHANG F . The Schur Complement and Its Applications[M]. Heidelberg: Springer, 2006: 34-37.
|
[24] |
SUN Y, BABU P, PALOMAR D P . Majorization-minimization Algorithms in Signal Processing, Communications, and Machine Learning[J]. IEEE Transactions on Signal Processing, 2017,65(3):794-816.
|
[25] |
STURM J F. . Using SeDuMi 1.02, a MATLABToolbox for Optimization over Symmetric Cones[J]. Optimization Methods and Software, 1999,11(1):625-653.
|
[26] |
LOFBERG J. YALMIP:a Toolbox for Modeling and Optimization in MATLAB [C]//Proceedings of the 2004 IEEE International Symposium on Computer Aided Control Systems Design. Piscataway: IEEE, 2004: 284-289.
|